首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
环保管理   1篇
基础理论   1篇
评价与监测   1篇
  2011年   1篇
  2004年   1篇
  1978年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Stream restoration has increasingly been used as a best management practice for improving water quality in urbanizing watersheds, yet few data exist to assess restoration effectiveness. This study examined the longitudinal patterns in carbon and nitrogen concentrations and mass balance in two restored (Minebank Run and Spring Branch) and two unrestored (Powder Mill Run and Dead Run) stream networks in Baltimore, Maryland, USA. Longitudinal synoptic sampling showed that there was considerable reach-scale variability in biogeochemistry (e.g., total dissolved nitrogen (TDN), dissolved organic carbon (DOC), cations, pH, oxidation/reduction potential, dissolved oxygen, and temperature). TDN concentrations were typically higher than DOC in restored streams, but the opposite pattern was observed in unrestored streams. Mass balances in restored stream networks showed net uptake of TDN across subreaches (mean ± standard error net uptake rate of TDN across sampling dates for Minebank Run and Spring Branch was 420.3 ± 312.2 and 821.8 ± 570.3 mg m(-2) d(-1), respectively). There was net release of DOC in the restored streams (1344 ± 1063 and 1017 ± 944.5 mg m(-2) d(-1) for Minebank Run and Spring Branch, respectively). Conversely, degraded streams, Powder Mill Run and Dead Run showed mean net release of TDN across sampling dates (629.2 ± 167.5 and 327.1 ± 134.5 mg m(-2) d(-1), respectively) and net uptake of DOC (1642 ± 505.0 and 233.7 ± 125.1 mg m(-2) d(-1), respectively). There can be substantial C and N transformations in stream networks with hydrologically connected floodplain and pond features. Assessment of restoration effectiveness depends strongly on where monitoring is conducted along the stream network. Monitoring beyond the stream-reach scale is recommended for a complete perspective of evaluation of biogeochemical function in restored and degraded urban streams.  相似文献   
2.
Light-dependent 14CO2 fixation by the algae of Diplosoma virens (Hartmeyer) ranged between about 3 and 27 moles mg-1 chlorophyll h-1. The principal first products of 14C fixation were 3-phosphoglyceric acid and phosphorylated sugars, indicating that ribulose bisphosphate carboxylase was the primary carboxylation enzyme. The activity of this enzyme in crude extracts of the algae was 4 to 6 moles CO2 mg-1 chlorophyll h-1. The principal end product of 14C fixation by these algae in the ascidian host was a water-soluble oligosaccharide which was an -1,4-glucan. A maximum of 7% of the 14C fixed was found in insoluble materials of the algae or its host after 60 min 14CO2 fixation. Whether the -1,4-glucan is a product of algal or animal metabolism remains to be determined.  相似文献   
3.
ABSTRACT: Watershed and aquatic ecosystem management requires methods to predict and understand thermal impacts on stream habitat from urbanization. This study evaluates thermal effects of projected urbanization using a modeling framework and considers the biological implications to the fish community. The Stream Network Temperature Model (SNTEMP) was used in combination with the Hydrologic Simulation Program Fortran (HSPF) to assess changes in stream thermal habitat under altered stream‐ flow, shade, and channel width associated with low, medium, and high density urban developments in the Back Creek watershed (Roanoke County, Virginia). Flow alteration by the high density development scenario alone caused minimal heating of mean daily summer base flow (mean +0.1°C). However, when flow changes were modeled concurrently with reduced shade and increased channel width, mean daily temperature increased 1°C. Maximum daily temperatures exceeding the state standard (31°C) increased from 1.1 to 7.6 percent of the time using summer 2000 climatic conditions. Model results suggest that additional urban development will alter stream temperature, potentially limiting thermal habitat and shifting the fish community structure from intolerant to tolerant fish species in Back Creek. More research is needed on the sub‐lethal or chronic effects of increased stream temperature regimes on fish, particularly for those species already living in habitats near their upper limits.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号