首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
污染及防治   1篇
评价与监测   1篇
  2003年   2篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
The Salinas River watershed along the central coast of California, U.S.A., supports rapidly growing urban areas and intensive agricultural operations. The river drains to an estuarine National Wildlife Refuge and a National Marine Sanctuary. The occurrence, spatial patterns, sources and causesof aquatic toxicity in the watershed were investigated by sampling four sites in the main river and four sites in representative tributaries during 15 surveys between September1998 and January 2000. In 96 hr toxicity tests, significant Ceriodaphnia dubia mortality was observed in 11% of the mainriver samples, 87% of the samples from a channel draining anurban/agricultural watershed, 13% of the samples fromchannels conveying agricultural tile drain runoff, and in 100% of the samples from a channel conveying agricultural surface furrow runoff. In six of nine toxicity identificationevaluations (TIEs), the organophosphate pesticides diazinon and/or chlorpyrifos were implicated as causes of observed toxicity, and these compounds were the most probable causes oftoxicity in two of the other three TIEs. Every sample collectedin the watershed that exhibited greater than 50% C. dubia mortality (n = 31) had sufficient diazinon and/or chlorpyrifos concentrations to account for the observed effects.Results are interpreted with respect to potential effects on other ecologically important species.  相似文献   
2.
The Salinas River is the largest of the three rivers that drain into the Monterey Bay National Marine Sanctuary in central California. Large areas of this watershed are cultivated year-round in row crops and previous laboratory studies have demonstrated that acute toxicity of agricultural drainwater to Ceriodaphnia dubia is caused by the organophosphate (OP) pesticides chlorpyrifos and diazinon. In the current study, we used a combination of ecotoxicologic tools to investigate incidence of chemical contamination and toxicity in waters and sediments in the river downstream of a previously uncharacterized agricultural drainage creek system. Water column toxicity was investigated using a cladoceran C. dubia while sediment toxicity was investigated using an amphipod Hyalella azteca. Ecological impacts of drainwater were investigated using bioassessments of macroinvertebrate community structure. The results indicated that Salinas River water downstream of the agricultural drain is acutely toxic to Ceriodaphnia, and toxicity to this species was highly correlated with combined toxic units (TUs) of chlorpyrifos and diazinon. Laboratory tests were used to demonstrate that sediments in this system were acutely toxic to H. azteca, which is a resident genus. Macroinvertebrate community structure was moderately impacted downstream of the agricultural drain input. While the lowest macroinvertebrate abundances were measured at the station demonstrating the greatest water column and sediment toxicity and the highest concentrations of pesticides, macroinvertebrate metrics were more significantly correlated with bank vegetation cover than any other variable. Results of this study suggest that pesticide pollution is the likely cause of laboratory-measured toxicity in the Salinas River samples and that this factor may interact with other factors to impact the macroinvertebrate community in the system.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号