首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
污染及防治   6篇
评价与监测   2篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1994年   1篇
  1988年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
A multi-year programme was performed to assess the effects of atmospheric ethylene on potato (Solanum tuberosum L.) in the vicinity of polyethylene manufacturing plants. There was a strong temporal variation of the hourly ethylene concentrations measured close to the sources from 1982 through 1991. Growing seasonal means exceeded 12 g m–3 ethylene, the threshold for phytotoxic effects under laboratory conditions. Young test plants of potato showed an epinastic response to enhanced levels of ethylene. This response was reversible and did not occur when atmospheric ethylene was not detected. Based on hourly observations for the growing seasons of 1984 through 1991, epinasty occurred on average during circa 5% of the growing season and varied from circa 1% in 1985 to circa 18% in 1991. At night, ethylene concentrations were higher and epinasty was more frequent than during daylight hours. The intermittent exposures to ethylene did not affect tuber yield for the growing seasons of 1982 through 1990. The occurrence of epinasty indicated that ethylene exposure levels in the vicinity of the industrial sources might be sufficiently high to affect sensitive plants.  相似文献   
2.
The impact on plant growth of the simultaneously changing factors of the global climate, rising tropospheric O3 concentrations and increasing UV-B radiation fluxes, has been tested in a combined glasshouse and growth chamber experiment. The saltmarsh grass species Elymus athericus was sequentially fumigated for two weeks with O3 and for another two weeks irradiated with UV-B (vv). Exposure to elevated UV-B did not negatively affect photosynthesis or plant growth. Fumigation with O3 had a depressing effect on net photosynthesis, the number and biomass of flowers, the number of leaves and the number of shoots. O3-induced damage only was observed in plants which had been fumigated during the last two weeks of the experiment. Since interactive responses were not observed, results suggest different primary target sites for O3 and UV-B within the plant.  相似文献   
3.
Chronic effects of ozone on wet grassland species early in the growing season might be altered by interspecific competition. Individual plants of Holcus lanatus, Lychnis flos-cuculi, Molinia caerulea and Plantago lanceolata were grown in monocultures and in mixed cultures with Agrostis capillaris. Mesocosms were exposed to charcoal-filtered air plus 25 nl l(-1) ozone (CF+25), non-filtered air (NF), non-filtered air plus 25 nl l(-1) ozone (NF+25) and non-filtered air plus 50 nl l(-1) ozone (NF+50) early in the growing seasons of 2000 through 2002. Ozone-enhanced senescence and visible foliar injury were recorded on some of the target plants in the first year only. Ozone effects on biomass production were minimal and plant response to ozone did not differ between monocultures and mixed cultures. After three years, above-ground biomass of the plants in mixed culture compared to monocultures was three times greater for H. lanatus and two to four times smaller for the other species.  相似文献   
4.
EDU (ethylenediurea) and non-EDU-treated bean plants (Phaseolus vulgaris) L. cv. Lit) were exposed to ambient air at four rural sites in the Netherlands during the growing seasonsof 1994 through 1996 to investigate the responses to ambient ozone. Ozone-induced foliar injury was observed each year anddifferences in injury between sites depended on year. On average,injury amounted to 27% in 1994, to 8% in 1995 and to 1% in 1996. Injury increased with increasing ozone exposure (AOT40) and the estimated AOT40 value corresponding with 5% injury wascirca 3650 nl l-1 h ozone. The highest ozone levels accumulated at each site for five consecutive days before injuryexceeded the proposed short-term critical level for injury development. EDU reduced injury and its protective effect was positively related to the injury intensity in non-EDU-treatedplants. Yield of green marketable pods (intermediate harvest) andmature pods (final harvest) was generally reduced in non-EDU-treated plants compared to EDU-treated plants and differences inyield reduction between harvests varied between years. The yield of mature pods was reduced in 1994 and 1996 while the yield ofgreen pods was reduced in 1995 by ozone only. Since yield reduction was not correlated with AOT40, the EDU method was notvalid to determine an ozone exposure-yield reponse relationshipfor bean.  相似文献   
5.
The effects of various ozone exposures in predisposing bean leaves (Phaseolus vulgaris L.) to Botrytis cinerea have been investigated under laboratory conditions. Seedlings of two bean cultivars were exposed to incremental ozone concentrations (120, 180 and 270 microg m(-3) for 8-h day(-1)) for five days and primary leaves were subsequently inoculated with conidia suspended in water or in an inorganic phosphate solution (Pi), and with mycelium. Ozone injury increased with increasing ozone concentration and was much higher in the ozone-sensitive cultivar 'Pros' than in the ozone-insensitive 'Groffy'. Ozone only increased the number of lesions on leaves of Pros after inoculation with either of the conidial suspensions. The Pi-stimulated infection in Groffy was reduced by the lower ozone concentrations. Ozone decreased lesion expansion after inoculation with mycelium. In a chronic fumigation experiment, plants of the two cultivars were exposed to 90 microg m(-3) (7-h day(-1)) and the primary and the oldest tree trifoliate leaves were inoculated after five and seven weeks of exposure. Ozone enhanced the senescence-related injury only in Pros. The number of lesions was not influenced by ozone for either cultivar, conidial suspension or inoculation date. Lesion expansion after inoculation with mycelium was generally reduced in exposed plants. Thus, contrasting effects of ozone on the susceptibility of bean leaves to B. cinerea were observed depending on the cultivar, the conidial suspension, the disease parameter and the ozone exposure pattern. In extrapolating the laboratory results to the field, it is suggested that episodic and chronic exposures to ambient ozone are of minor importance in increasing the susceptibility of bean leaves to B. cinerea.  相似文献   
6.
Data of a multi-year (1977-1983) biomonitoring programme with marigold and petunia around polyethylene manufacturing plants was analysed to assess plant responses to atmospheric ethylene and to determine the area at risk for the phytotoxic effects of this pollutant. In both species, flower formation and growth were severely reduced close to the emission sources and plant performance improved with increasing distance. Plants exposed near the border of the research area had more flowers than the unexposed control while their growth was normal. Measurements of ethylene concentrations at a border site revealed that the growing season mean was 61.5 g m(-3) in 1982 and 15.6 g m(-3) in 1983. In terms of number of flowers, petunia was more sensitive than marigold and adverse effects were observed within ca. 400 m distance from the sources for marigold and within ca. 460 m for petunia. The area at risk (ca. 870 m) for ethylene-induced growth reduction was also limited to the industrial zone. Plants were more sensitive to ethylene in terms of growth reduction than in terms of inhibition of flowering. In the Netherlands, maximum permissible levels of ethylene are currently based on information from laboratory and greenhouse studies. Our results indicate that these levels are rather conservative in protecting field-grown plants against ethylene-induced injury near polyethylene manufacturing plants.  相似文献   
7.
Plants of bean (Phaseolus vulgaris cv. Pros) were exposed to a range of O3 concentrations up to 70 nl litre(-1) for 9 h day(-1) in the presence (45 nl litre(-1)) and absence (21 nl litre(-1)) of enhanced NH3 in 12 open-top chambers. Treatment effects on visible injury, growth and yield were assessed after 49 (intermediate harvest) and 62 days of exposure (final harvest). The proportion of leaves with visible injury at final harvest increased with increasing concentrations of O3. Enhanced NH3 did not cause any symptoms and did not affect injury by O3. The estimated seasonal mean concentration corresponding with 5% injury was circa 23 nl litre(-1) O3. Biomass production and green pod yield decreased with increasing concentrations of O3 and were generally stimulated by enhanced NH3 at both harvests. Adverse effects of O3 on biomass and pod yield did not depend on the NH3 level. Relative yield response to increasing 9-h daily mean O3 concentrations was nonlinear and yield losses of 5 and 10% were calculated to occur at seasonal daytime mean concentrations of 27 and 33 nl litre(-1) O3, respectively. Linear regression showed that the Accumulated exposures Over a Threshold of 30 (AOT30) and 40 nl litre(-1) (AOT40) O3 performed equally well. The estimated accumulated O3 exposures corresponding with a yield loss of 5% were 1600 nl litre(-1) h for AOT30 and 400 nl litre(-1) h for AOT40. The results are discussed in relation to the long-term critical level that is used as a guideline to protect crops against adverse effects by O3.  相似文献   
8.
The extent of yield reduction and economic loss caused by air pollution has been estimated for The Netherlands. Based on available data on direct effects only, each species was designated as sensitive, moderately sensitive or tolerant. On a nationwide scale, only ozone (O3), sulphur dioxide (SO2), and hydrogen fluoride (HF) exceeded effect thresholds. Effects from pollutant combinations were assumed to be additive. Yield reductions were calculated, using 10 exposure-response relationships and concentration data from the Dutch air pollution monitoring network. Changes in air pollution levels result in changes in supply. By multiplying the supply with the current price, the so-called crop volume was calculated. Subsequently, changes in crop volume were converted into economic terms, taking into account demand elasticity. On the basis of these calculations, air pollution in The Netherlands reduces total crop volume by 5%:3.4% by O3, 1.2% by SO2, and 0.4% by HF. The slope of the nonlinear relationship between crop volume reduction and exposure level increases at higher concentrations. In general, air pollution causes relatively little loss to producers, since yield reductions are largely compensated by higher prices. If air pollution in The Netherlands would be reduced to background concentrations, consumers would experience a net gain of Dfl 640 million (US 320 million dollars). Although large amounts of data were attained through literature and our own experience for this study, many assumptions still had to be made to arrive at these conclusions. With the current available knowledge, validation of our results in the field is not yet possible.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号