首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
基础理论   4篇
评价与监测   1篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
  1988年   1篇
  1985年   1篇
排序方式: 共有5条查询结果,搜索用时 359 毫秒
1
1.
Exposure to asphalt fumes has a threshold limit value (TLV of 0.5 mg m(-3) (benzene extractable inhalable particulate) as recommended by the American Conference of Governmental Industrial Hygienists (ACGIH). This reflects a recent change (2000) whereby two variables are different from the previous recommendation. First is a 10-fold reduction in quantity from 5 mg m(-3) to 0.5 mg m(-3). Secondly, the new TLV specifies the "inhalable" fraction as compared to what is presumed to be total particulate. To assess the impact of these changes, this study compares the differences between measurements of paving asphalt fume exposure in the field using an "inhalable" instrument versus the historically used 'total' sampler. Particle size is also examined to assist in the understanding of the aerodynamic collection differences as related to asphalt fumes and confounders. Results show that when exposures are limited to asphalt fumes, a 1:1 relationship exists between samplers, showing no statistically significant differences in benzene soluble matter (BSM). This means that for the asphalt fume ACGIH TLV, the 'total' 37-mm sampler is an equivalent method to the "inhalable" method, referred to as IOM (Institute of Occupational Medicine), and should be acceptable for use against the TLV. However, the study found that when confounders (dust or old asphalt millings) are present in the workplace, there can be significant differences between the two samplers' reported exposure. The ratio of IOM/Total was 1.37 for milling asphalt sites, 1.41 for asphalt paving over granular base, and 1.02 for asphalt over asphalt pavements.  相似文献   
2.
It is widely accepted that successful grazing management strategies in semiarid ecosystems need to be adapted to the highly temporal and spatially heterogeneous forage production. Nevertheless, a full understanding of the key factors and processes for sustainable adaptive management has yet to be reached. The investigation of existing, successful range management systems by simulation models may help to derive general understanding and basic principles. The semi-nomadic Himba in northern Namibia applied a sophisticated management system until the mid-1990s which combined season-dependent pasture use (resulting in rainy-season pastures and dry-season pastures), preservation of reserves for drought and sanctions for rule breaking. A stochastic ecological simulation model has been developed here which represents the main aspects of this management system. With this model we analyze (1) which components of the traditional Himba strategy are essential for sustainability and (2) what happens to the state of the rangeland system under socioeconomic changes. This study shows that temporally and spatially heterogeneous pasture use yields higher productivity and quality of a pasture area than the pressure of homogeneous permanent grazing. Two aspects are of importance: (1) intra-annual heterogeneous use (resting of the dry-season pastures during the rainy season) and (2) interannual heterogeneous use (spatial extension of grazing in years of drought). This management system leads to an effective build-up and use of a buffer in the system: the reserve biomass (the non-photosynthetic reserve organs of the plants), an indicator for grazing and management history. Analyzing purchase as one form of socioeconomic change, we demonstrate that easier market access to purchase livestock may lead to a decline in vegetation quality. However, cattle production increases as long as rest periods on parts of the pasture during the rainy season are granted. Methodologically, we emphasize that simulation models offer an excellent framework for analyzing and depicting basic principles in sustainable range management derived from local knowledge. They provide the opportunity of testing whether these basic principles are also valid under different ecological and socioeconomic settings.  相似文献   
3.
A simple energy-balance model, relating energetic requirements of fish schools to food production, was used to predict shoal sizes. Lower limits to school size are unlikely to be set by food but rather by predation. Upper limits depend on both food and school behavior, being greater for schools that break up to feed than for schools that remain continuously cohesive. Faced with a decreasing food supply, a school could either break into smaller schools or change behavior, increasing the area available for foraging. The models suggest that environmental productivity needs to be considered when examining fishery statistics such as (catch per unit effort), where maximum catch may be limited by maximum school size.  相似文献   
4.
A new stochastic optimal control approach is introduced which quantifies the risk of extinction of a population associated with its optimal exploitation. In addition the maximization of the profit can be performed subject to the constraint that the mentioned risk does not exceed a given limit. As a first example for this general method an exponentially growing population is investigated. The interdependence of the risk and the profit is discussed. This model reveals the possibility of reducing the risk considerably without a substantial decrease of profit.  相似文献   
5.
Ecological theory suggests that environmental variability can promote coexistence, provided that species occupy differential niches. In this study, we focus on two questions: (1) Do allocation trade-offs provide a sufficient basis for niche differentiation in succulent plant communities? (2) What is the relative importance of different forms of environmental variability on species diversity and community composition? We approach these questions with a generic, individual-based simulation model. In our model, plants compete for water in a spatially explicit environment. Species differ in their size at maturity and in the allocation of carbon to roots, leaves and storage tissue. The model was fully specified with independent literature data. Model output was compared to characteristics of a species-rich community in the semi-arid Richtersveld (South Africa). The model reproduced the coexistence of plants with different sizes at maturity, the dominance of succulent shrubs, and the level of vegetation cover. We analyzed the effects of three forms of environmental variability: (a) temporal fluctuations in precipitation (rain and fog), (b) spatial heterogeneity of water supply due to run-on and run-off processes and (c) ‘rock pockets’ that limit root competition in space. The three types of variability had differential effects on diversity: diversity exhibited a strong hump-shaped response to temporal variation. Spatial variability increased diversity, with the strongest increase occurring at intermediate levels of temporal variability. Finally, rock pockets had the weakest effect, but contributed to diversity by providing refuges for small species, particularly at low temporal variability. The model thus shows that spatio-temporal variation of resource supply can maintain diversity over long time scales even in small systems, as is the case in the Richtersveld succulent communities. Trade-offs in allocation provide the basis for necessary niche differentiation. By describing resource competition between individual plants, our model provides a mechanistic basis for the link from species traits to community composition at given environmental conditions. It thereby contributes to an understanding of the forces shaping plant communities. Such an understanding is critical to reduce the threats environmental change poses to biodiversity and ecosystem services.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号