首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
废物处理   1篇
综合类   2篇
污染及防治   1篇
社会与环境   1篇
  2018年   1篇
  2015年   1篇
  2009年   1篇
  2008年   1篇
  2004年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
Regional Environmental Change - The soils of the Mediterranean Basin are the products of soil processes that have been governed by a unique convergence of highly differentiated natural and...  相似文献   
2.
This paper serves two purposes: it provides a summarized scientific history of carbon sequestration in relation to the soil-plant system and gives a commentary on organic wastes and SOC sequestration.The concept of soil organic carbon (SOC) sequestration has its roots in: (i) the experimental work of Lundegårdh, particularly his in situ measurements of CO2 fluxes at the soil-plant interface (1924, 1927, 1930); (ii) the first estimates of SOC stocks at the global level made by Waksman [Waksman, S.A., 1938. Humus. Origin, Chemical Composition and Importance in Nature, second ed. revised. Williams and Wilkins, Baltimore, p. 526] and Rubey [Rubey, W.W., 1951. Geologic history of sea water. Bulletin of the Geological Society of America 62, 1111–1148]; (iii) the need for models dealing with soil organic matter (SOM) or SOC dynamics beginning with a conceptual SOM model by De Saussure (1780–1796) followed by the mathematical models of Jenny [Jenny, H., 1941. Factors of Soil Formation: a System of Quantitative Pedology. Dover Publications, New York, p. 288], Hénin and Dupuis [Hénin, S., Dupuis, M., 1945. Essai de bilan de la matière organique. Annales d’Agronomie 15, 17–29] and more recently the RothC [Jenkinson, D.S., Rayner, J.H., 1977. The turnover of soil organic matter in some of the Rothamsted classical experiments. Soil Science 123 (5), 298–305] and Century [Parton, W.J., Schimel, D.S., Cole, C.V., Ojima, D.S., 1987. Analysis of factors controlling soil organic matter levels in great plains grasslands. Soil Science Society of America Journal 51 (5), 1173–1179] models.The establishment of a soil C sequestration balance is not straightforward and depends greatly on the origin and the composition of organic matter that is to be returned to the system. Wastes, which are important sources of organic carbon for soils, are taken as an example. For these organic materials the following factors have to be considered: the presence or absence of fossil C, the potential of direct and indirect emissions of non-CO2 greenhouse gases (CH4 and N2O) following application and the agro-system which is being used as a comparative reference.  相似文献   
3.
This paper shows the geographic distribution in Germany of iron (Fe), nickel (Ni) and lead (Pb) analyzed in mosses in 1995/96 and compares it with the results of the 1990/91 pilot study within a European moss-monitoring programme. Other elements (As, Cd, Cr, Cu, Ti, V, Zn) are compared on basis of the overall element medians for Germany of the 1990/91 and 1995/96 survey. Samples of Pleurozium schreberi, Scleropodium purum, Hypnum cupressiforme and Hylocomium splendens were taken at a total of 1026 sites. In the 1995/96 monitoring campaign, 95% of the original sites of the 1990/91 study were resampled. The results from 1995/96 display local elevated values and many cases of areas affected by known sources of heavy-metal emissions. The industrialized and urban regions of Germany are shown up clearly by the 1995/96 moss-monitoring results: the Ruhr area, parts of Saarland and Baden-Württemberg, as well as areas in eastern Germany. Relatively low values for many elements were found in large areas of Lower Saxony and Bavaria. A comparison of the results of the 1990/91 and 1995/96 moss-monitoring programmes shows a fall in the concentration of the presented elements (except cadmium, copper and zinc) over the relevant period. Especially in the former GDR, chromium (Cr), iron (Fe), titanium (Ti) and vanadium (V) decreased significantly. This is, firstly, a reflection of the closure of and/or technological improvements to large power plants; secondly it is due to the fact that lignite has given way to other fuels. Vanadium (V) and nickel (Ni), typical constituents of crude oil, also show a decrease in the western part and thus document changes in the type of fuel consumed. The significant fall in lead concentration in 1995/96 as compared to 1990/91 in what used to be East and West Germany probably results from the increasing use of lead-free petrol. A comparison of the median values for 1990/91 and 1995/96 in mosses to the rate of emission of heavy metals in Germany for 1990 and 1995 shows similar trends in the case of elements such as arsenic (As), chromium (Cr), nickel (Ni), and lead (Pb). The comparison of the medians of the elements analyzed for 19 European countries indicates for most of the elements a general tendency to lower values in 1995, except for Lithuania, Netherlands, Portugal, Italy and United Kingdom.  相似文献   
4.
While Carbon (C) sequestration on farmlands may contribute to mitigate CO2 concentrations in the atmosphere, greater agro-biodiversity may ensure longer term stability of C storage in fluctuating environments. This study was conducted in the highlands of western Kenya, a region with high potential for agroforestry, with the objectives of assessing current biodiversity and aboveground C stocks in perennial vegetation growing on farmland, and estimating C sequestration potential in aboveground C pools. Allometric models were developed to estimate aboveground biomass of trees and hedgerows, and an inventory of perennial vegetation was conducted in 35 farms in Vihiga and Siaya districts. Values of the Shannon index (H), used to evaluate biodiversity, ranged from 0.01 in woodlots through 0.4–0.6 in food crop plots, to 1.3–1.6 in homegardens. Eucalyptus saligna was the most frequent tree species found as individual trees (20%), in windrows (47%), and in woodlots (99%) in Vihiga and the most frequent in woodlots (96%) in Siaya. Trees represented the most important C pool in aboveground biomass of perennial plants growing on-farm, contributing to 81 and 55% of total aboveground farm C in Vihiga and Siaya, respectively, followed by hedgerows (13 and 39%, respectively) and permanent crop stands (5 and 6%, respectively). Most of the tree C was located in woodlots in Vihiga (61%) and in individual trees growing in or around food crop plots in Siaya (57%). The homegardens represented the second C pool in importance, with 25 and 33% of C stocks in Vihiga and Siaya, respectively. Considering the mean total aboveground C stocks observed, and taking the average farm sizes of Vihiga (0.6 ha) and Siaya (1.4 ha), an average farm would store 6.5 ± 0.1 Mg C farm?1 in Vihiga and 12.4 ± 0.1 Mg C farm?1 in Siaya. At both sites, the C sequestration potential in perennial aboveground biomass was estimated at ca. 16 Mg C ha?1. With the current market price for carbon, the implementation of Clean Development Mechanism Afforestation/Reforestation (CDM A/R) projects seems unfeasible, due to the large number of small farms (between 140 and 300) necessary to achieve a critical land area able to compensate the concomitant minimum transaction costs. Higher financial compensation for C sequestration projects that encourage biodiversity would allow clearer win–win scenarios for smallholder farmers. Thus, a better valuation of ecosystem services should encourage C sequestration together with on-farm biodiversity when promoting CDM A/R projects.  相似文献   
5.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号