首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
废物处理   3篇
环保管理   1篇
综合类   1篇
基础理论   1篇
污染及防治   1篇
社会与环境   1篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2009年   1篇
  2008年   1篇
  2004年   1篇
排序方式: 共有8条查询结果,搜索用时 31 毫秒
1
1.
2.
Selected energy and material resource conversion systems are compared in this paper under an extended LCA point of view. A multi-method multi-scale assessment procedure is applied in order to generate consistent performance indicators based on the same set of input data, to ascertain the existence of constraints or crucial steps characterized by low conversion efficiency and to provide the basis for improvement patterns. Optimizing the performance of a given process requires that many different aspects are taken into account. Some of them, mostly of technical nature, relate to the local scale at which the process occurs. Other technological, economic and environmental aspects are likely to affect the dynamics of the larger space and time scales in which the process is embedded. These spatial and time scale effects require that a careful evaluation of the relation between the process and its surroundings is performed, so that hidden consequences and possible sources of inefficiency and impact are clearly identified. In this paper we analyse and compare selected electricity conversion systems, alternative fuels and biofuels, waste management strategies and finally the time evolution of an urban system, in order to show the importance of a multiple perspective point of view for the proper evaluation of a system's environmental and resource use performance.  相似文献   
3.
The utilization of forest residues for bioenergy in Norway is foreseen to increase due to the government call to double bioenergy output by 2020 to thirty Tera-Watt hours. This study focuses on the climate impacts of bioenergy utilization where four forest residue extraction scenarios at clear-cut are considered: i) 75 % above ground residues (branches, (25 %) foliage, tops); ii) 75 % above and below ground residues (branches, tops, (25 %) foliage, stumps, coarse and small roots); iii) extracting 100 % of all available forest residue; and iv) leaving all residues in the forest. The Yasso07 soil-carbon model was utilized to quantify the carbon flux to the atmosphere due to the forest residues that are left in the forest in each scenario. The climate impact potential for each scenario was then calculated for the carbon-flux neutral Norway Spruce (Picea abies) forest system in five regions of Norway. The biogenic carbon dioxide emissions associated to decomposition upon forest floor, procurement losses and bioenergy conversion are included in these calculations. Results suggest that if such bioenergy can directly replace a fossil source of energy, the utilization of this biomass was found to be climatically beneficial in most fossil energy replacement cases and time horizons when compared to leaving the residues in the forest. Integrated global temperature change displacement factors have been developed which have been used to estimate the magnitude of this climate change mitigation over a particular time horizon.  相似文献   
4.
The importance that nitrogen (N) deposition has in driving the carbon (C) sequestration of forests has recently been investigated using both experimental and modeling approaches. Whether increased N deposition has positive or negative effects on such ecosystems depends on the status of the N and the duration of the deposition. By combining δ13C, δ18O, δ15N and dendrochronological approaches, we analyzed the impact of two different sources of NOx emissions on two tree species, namely: a broadleaved species (Quercus cerris) that was located close to an oil refinery in Southern Italy, and a coniferous species (Picea abies) located close to a freeway in Switzerland. Variations in the ci/ca ratio and the distinction between stomatal and photosynthetic responses to NOx emissions in trees were assessed using a conceptual model, which combines δ13C and δ18O. δ15N in leaves, needles and tree rings was found to be a bioindicator of N input from anthropogenic emissions, especially at the oil refinery site. We observed that N fertilization had a stimulatory effect on tree growth near the oil refinery, while the opposite effect was found for trees at the freeway site. Changes in the ci/ca ratio were mostly related to variations in δ13C at the freeway site and, thus, were driven by photosynthesis. At the oil refinery site they were mainly related to stomatal conductance, as assessed using δ18O. This study demonstrates that a single method approach does not always provide a complete picture of which physiological traits are more affected by N emissions. The triple isotope approach combined with dendrochronological analyses proved to be a very promising tool for monitoring the ecophysiological responses of trees to long-term N deposition.  相似文献   
5.
Landfilling is nowadays the most common practice of waste management in Italy in spite of enforced regulations aimed at increasing waste pre-sorting as well as energy and material recovery. In this work we analyse selected alternative scenarios aimed at minimizing the unused material fraction to be delivered to the landfill. The methodological framework of the analysis is the life cycle assessment, in a multi-method form developed by our research team. The approach was applied to the case of municipal solid waste (MSW) management in Rome, with a special focus on energy and material balance, including global and local scale airborne emissions. Results, provided in the form of indices and indicators of efficiency, effectiveness and environmental impacts, point out landfill activities as the worst waste management strategy at a global scale. On the other hand, the investigated waste treatments with energy and material recovery allow important benefits of greenhouse gas emission reduction (among others) but are still affected by non-negligible local emissions. Furthermore, waste treatments leading to energy recovery provide an energy output that, in the best case, is able to meet 15% of the Rome electricity consumption.  相似文献   
6.
The insoluble organic fraction isolated from rice-hulls residues and animal fecal matter mixture is sulphonated in liquid SO3 at 200 degrees C to a water soluble sulphonate (III). III is compared to the sulphonate (IV) obtained from the same mix after composting. Both products have been found to contain mixtures of molecules with close molecular weight. These molecules consist of a central cicloaliphatic cluster with peripheral pending aromatic chains. III and IV appear to have the same sulphonation degree. However, the latter contains higher concentrations of cicloaliphatic fragments and of amide, phenol and ether bonds, but less carboxylic and amine functional groups. These differences may be reasonably traced back to the starting materials. By comparison with commercial lignosulphonates derived from the paper and pulp industry, the above arylsulphonates are likely candidates for a variety of applications in the chemical industry and in agriculture. We conclude that sulphonation, even under the drastic experimental conditions of this work, does not seem to erase the memory of the parent matter structure. This reaction is capable of upgrading recalcitrant organic matter in vegetable waste residues to an interesting variety of lignosulphonates.  相似文献   
7.
Life Cycle Assessment (LCA) methodology is the prevailing framework for estimating the environmental performances of a product/service. The application of LCA frequently requires practitioners to address allocation issues, especially when a large number of co-products are produced. The choice of an allocation approach for multifunctional processes is among the most debated methodological aspects in the LCA community, given its potentially large influence on final outcomes. Despite numerous efforts, a uniform consensus on the best allocation practice is still lacking and no single method appears as the most suitable for all situations.The aim of this paper is to assess how different allocation methods affect the environmental performances of a lignocellulosic biorefinery. Biorefinery systems represent a good example of a multifunctional process, since they co-produce multiple energy and material products. The following allocation procedures are applied: system expansion (also named substitution method), partitioning method according to different features of co-products (mass, energy, exergy and economic value), and hybrid approach (given by a combination of the previous ones). In order to enhance the clarity of the discussion, a mathematical notation for these allocation procedures is adopted, and analytical interrelations are investigated. Results show the influence of the allocation methods on the environmental impacts assigned to the individual products, both on a unit and annual flow basis.  相似文献   
8.
The recovery of high-quality plastic materials is becoming an increasingly challenging issue for the recycling sector. Technologies for plastic recycling have to guarantee high-quality secondary raw material, complying with specific standards, for use in industrial applications. The variability in waste plastics does not always correspond to evident differences in physical characteristics, making traditional methodologies ineffective for plastic separation. The Multidune separator is a hydraulic channel allowing the sorting of solid particles on the basis of differential transport mechanisms by generating particular fluid dynamic conditions due to its geometric configuration and operational settings. In this paper, the fluid dynamic conditions were investigated by an image analysis technique, allowing the reconstruction of velocity fields generated inside the Multidune, considering two different geometric configurations of the device, Configuration A and Configuration B. Furthermore, tests on mono- and bi-material samples were completed with varying operational conditions under both configurations. In both series of experiments, the bi-material samples were composed of differing proportions (85% vs. 15%) to simulate real conditions in an industrial plant for the purifying of a useful fraction from a contaminating fraction. The separation results were evaluated in terms of grade and recovery of the useful fraction.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号