首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   0篇
废物处理   2篇
环保管理   1篇
综合类   1篇
基础理论   2篇
污染及防治   16篇
评价与监测   1篇
社会与环境   5篇
  2018年   1篇
  2015年   1篇
  2013年   1篇
  2010年   1篇
  2009年   3篇
  2008年   2篇
  2007年   4篇
  2005年   2篇
  2003年   2篇
  2001年   1篇
  2000年   4篇
  1997年   1篇
  1994年   2篇
  1990年   1篇
  1989年   1篇
  1983年   1篇
排序方式: 共有28条查询结果,搜索用时 145 毫秒
1.
Road traffic emissions, one of the largest source categories in megacity inventories, are highly uncertain. It is essential to develop methodologies to reduce these uncertainties to manage air quality more effectively. In this paper, we propose a methodology to estimate road traffic emission factors (EFs) from a tracer experiment and from roadside pollutants measurements. We emitted continuously during about 300 non-consecutive hours a passive tracer from a finite line source placed on one site of an urban street. At the same time, we measured continuously the resulting tracer concentrations at the other side of the street with a portable on-line gas chromatograph. We used n-propane contained in commercial liquid petroleum gas (LPG) as a passive tracer. Propane offers several advantages to traditional tracers (SF6, N2O, CFCs): low price, easily available, non-reactive, negligible global warming potential, and easy to detect with commercial on-line gas chromatographs.The tracer experiment was carried out from January to March 2007 in a busy street of Ho Chi Minh City (Vietnam). Traffic volume, weather information and pollutant concentrations were also measured at the measurement site. We used the results of the tracer experiment to calculate the dilution factors and afterwards we used these dilution factors, the traffic counts and the pollutant concentrations to estimate the EFs. The proposed method assumes that the finite emission line represents the emission produced by traffic in the full area of the street and therefore there is an error associated to this assumption. We use the Computational Fluids Dynamics (CFD) model MISKAM to calculate this error and to correct the HCMC EFs. EFs for 15 volatile organic compounds (VOCs) and NO are reported here. A comparison with available studies reveals that most of the EFs estimated here are within the range of EFs reported in other studies.  相似文献   
2.
3.
Seasonal trends in leaf gas exchange and ozone-induced visible foliar injury were investigated for three ozone sensitive woody plant species. Seedlings of Populus nigra L., Viburnum lantana L., and Fraxinus excelsior L. were grown in charcoal-filtered chambers, non-filtered chambers and open plots. Injury assessments and leaf gas exchange measurements were conducted from June to October during 2002. All species developed typical ozone-induced foliar injury. For plants exposed to non-filtered air as compared to the charcoal-filtered air, mean net photosynthesis was reduced by 25%, 21%, and 18% and mean stomatal conductance was reduced by 25%, 16%, and 8% for P. nigra, V. lantana, and F. excelsior, respectively. The timing and severity of the reductions in leaf gas exchange were species specific and corresponded to the onset of visible foliar injury.  相似文献   
4.
Results are presented from the UN/ECE ICP Vegetation (International Cooperative Programme on effects of air pollution on natural vegetation and crops) experiments in which ozone(O(3))-resistant (NC-R) and -sensitive (NC-S) clones of white clover (Trifolium repens cv. Regal) were exposed to ambient O(3) episodes at 14 sites in eight European countries in 1996, 1997 and 1998. The plants were grown according to a standard protocol, and the forage was harvested every 28 days for 4-5 months per year by excision 7 cm above the soil surface. Biomass ratio (NC-S/NC-R) was related to the climatic and pollutant conditions at each site using multiple linear regression (MLR) and artificial neural networks (ANNs). Twenty-one input parameters [e.g. AOT40, 7-h mean O(3) concentration, daylight vapour pressure deficit (VPD), daily maximum temperature] were considered individually and in combination with the aim of developing a model with high r(2) and simple structure that could be used to predict biomass change in white clover. MLR models were generally more complex, and performed less well for unseen data than non-linear ANN models. The ANN model with the best performance had five inputs with an r(2) value of 0.84 for the training data, and 0.71 for previously unseen data. Two inputs to the model described the O(3) conditions (AOT40 and 24-h mean for O(3)), two described temperature (daylight mean and 24-h mean temperature), and the fifth input appeared to be differentiating between semi-urban and rural sites (NO concentration at 17:00). Neither VPD nor harvest interval was an important component of the model. The model predicted that a 5% reduction in biomass ratio was associated with AOT40s in the range 0.9-1.7 ppm x h (microl l(-1) h) accumulated over 28 days, with plants being most sensitive in conditions of low NO(x), medium-range temperature, and high 24-h mean O(3) concentration.  相似文献   
5.
Exposure-response data from open-top chamber (OTC) experiments are often directly applied to ambient air (AA) conditions. Because microclimatic conditions are modified and pollutant uptake by plants may differ (i.e. 'chamber effect'), there is concern about the influence of OTCs on these relationships. In addition, AA concentrations are often measured at a height which differs from canopy height and correction for the concentration gradient (i.e. 'gradient effect') is necessary. To quantify the relative contribution of plant characteristics and microclimatic factors to these effects, ozone uptake by horizontal leaves at the top of the canopy was calculated for plants grown in OTCs or AA by using a resistance analogy model. Data from an OTC experiment in 1996/97 for six species typical of productive grasslands were used. Ozone concentration inside OTCs was set equal to the concentration measured at a height of 3 m above ground (C(z(ref))) or at canopy height (C(0)). The gradient effect resulted in a 16-27% lower average C(0) than C(z(ref)), depending on species. The main determinant of the chamber effect was a systematic difference in leaf-to-air vapour pressure deficit between OTCs and AA which affected stomatal resistance and ozone uptake. In case of monocultures both effects were species-specific. In species mixtures the gradient effect differed between mixing ratios, whereas the chamber effect was species-specific. Because of the inter-specific difference in the chamber effect on ozone uptake, it is concluded that ozone effects on species mixtures differ systematically between OTCs and AA. The data underline that extrapolation of ozone flux-response relationships from OTC experiments must be based on canopy-level ozone concentrations, and that these relationships should be applied only to single species under microclimatic conditions similar to those prevailing in the experiment.  相似文献   
6.
Managed pasture composed of grasses, clover and weeds was exposed in open-top chambers to different levels of ozone (O(3)) during two consecutive seasons to study changes in yield, species composition, canopy structure, and forage quality. The pasture was established in 1990 and exposed in 1991 and 1992. Ozone treatments included charcoal-filtered air (CF), non-filtered air (NF), and two treatments with O(3) added to NF air during periods with global radiation >/= 400 W m(-2) (NF(+), NF(++)). The ratio between the 2-year cumulative, radiation-weighted O(3) concentration in ambient air (= 365 microl litre(-1) h) and in the different treatments was 0.50 (CF), 0.85 (NF), 1.11 (NF(+)), and 1.64 (NF(++)). Plots were harvested four times in 1991, and five times in 1992. The total forage yield for both seasons was modified little by O(3). The yield reduction in NF(++) was only 10% as compared to the CF treatment. Also, only marginal changes were observed in forage quality (Ca, crude protein, crude fibre), and in leaf area index and fractional light penetration. Ozone strongly reduced the yield of clover (Trifolium repens L. and Trifolium pratense L.). The O(3)-effect on clover growth was small after the first harvest and increased with each growth period. In NF, the 2-year cumulative clover yield was reduced by 24% relative to CF. In NF(++), clover growth almost ceased near the end of the second season. The reduction in clover yield with increasing O(3) was associated with a slight increase in the yield of grasses (mainly Dacytlis glomerata L). The increase in the proportion of invading species (weeds or herbs) (Taraxacum officinale L.) during the experiment was not significantly affected by O(3). A second order polynomial function was fitted to the data to establish an exposure-response model for the cumulative clover yield and the cumulative, radiation-weighted O(3) dose, and linear models were developed for total forage mass, grass yield and yield of weeds. Reducing O(3) from elevated levels (NF(+) and NF(++)) during the first season to near-ambient levels (NF) during the second season resulted in a significant recovery of clover yield after two re-growth periods. It is concluded that continuous exposure to ambient levels of O(3) negatively affects the yield of clover in frequently cut, managed pasture, but because of the relatively small proportion of clover, the shift in species composition only marginally affects total forage yield and forage quality. It is emphasised, however, that limitations of the experimental system must be taken into account before extrapolations to real field situations can be made.  相似文献   
7.
In a three-year study carried out at a rural site in Switzerland, spring wheat (Triticum aestivum L. cv. Albis) was exposed to different levels of ozone (O(3)) in open-top-field chambers from the two-leaf stage until harvest. Field plots in ambient air (AA) were used for comparison. Grain recovered from the different treatments was analyzed for minerals (Ca, Mg, K, P), starch, protein, amino acids and alpha-tocopherol, in order to investigate the effect of O(3) on grain composition. Chamber-enclosure had small effects on some parameters (K, protein), but not on others (starch), as shown by the comparison of data from the AA and non-filtered-air treatment (NF). Differences between NF and charcoal-filtered air (CF) were very small. At O(3) concentrations higher than in the NF treatment (O(3)-1 = 1.5xNF and O(3)-2 = 2.5xNF), mineral contents were higher than in the NF and CF treatments. Protein content was increased only in the O(3)-2 treatment. Starch contents decreased from about 63% in the CF treatment to 54% in the O(3)-2 tratment. No effect of O(3) on the content of alpha-tocopherol and on the essential amino acid index of the protein was observed. It is concluded that compositional changes in wheat grain in response to O(3) are minor, and that ambient O(3) is not likely to cause important changes.  相似文献   
8.
This overview of experimentally induced effects of ozone aims to identify physiological and ecological principles, which can be used to classify the sensitivity to ozone of temperate grassland communities in Europe. The analysis of data from experiments with single plants, binary mixtures and multi-species communities illustrates the difficulties to relate individual responses to communities, and thus to identify grassland communities most at risk. Although there is increasing evidence that communities can be separated into broad classes of ozone sensitivity, the database from experiments under realistic conditions with representative systems is too small to draw firm conclusions. But it appears that risk assessments, based on results from individuals or immature mixtures exposed in chambers, are only applicable to intensively managed, productive grasslands, and that the risk of ozone damage for most of perennial grasslands with lower productivity tends to be less than previously expected.  相似文献   
9.
A recently developed novel intense rare-gas excimer vacuum ultraviolet (VUV) light source, the electron beam-pumped excimer lamp (EBEL), has been applied to the soft single-photon ionization (SPI) of organic molecules in a compact orthogonal acceleration time-of-flight mass spectrometer (oaTOFMS). The SPI-oaTOFMS system was applied to the on-line monitoring of tobacco smoke. With this setup, it was possible to analyze the composition of individual puffs of cigarette smoke. Furthermore, a gas chromatograph (GC) was coupled to the EBEL SPIoaTOFMS system. Soft photo-ionization represents an additional separation dimension. By combination of the gas chromatographic and the soft-ionization mass spectroscopic separation dimensions, a truly multidimensional comprehensive analytical method could be derived.  相似文献   
10.
Ecological issues related to ozone: agricultural issues   总被引:29,自引:0,他引:29  
Research on the effects of ozone on agricultural crops and agro-ecosystems is needed for the development of regional emission reduction strategies, to underpin practical recommendations aiming to increase the sustainability of agricultural land management in a changing environment, and to secure food supply in regions with rapidly growing populations. Major limitations in current knowledge exist in several areas: (1) Modelling of ozone transfer and specifically stomatal ozone uptake under variable environmental conditions, using robust and well-validated dynamic models that can be linked to large-scale photochemical models lack coverage. (2) Processes involved in the initial reactions of ozone with extracellular and cellular components after entry through the stomata, and identification of key chemical species and their role in detoxification require additional study. (3) Scaling the effects from the level of individual cells to the whole-plant requires, for instance, a better understanding of the effects of ozone on carbon transport within the plant. (4) Implications of long-term ozone effects on community and whole-ecosystem level processes, with an emphasis on crop quality, element cycling and carbon sequestration, and biodiversity of pastures and rangelands require renewed efforts.The UNECE Convention on Long Range Trans-boundary Air Pollution shows, for example, that policy decisions may require the use of integrated assessment models. These models depend on quantitative exposure-response information to link quantitative effects at each level of organization to an effective ozone dose (i.e., the balance between the rate of ozone uptake by the foliage and the rate of ozone detoxification). In order to be effective in a policy, or technological context, results from future research must be funnelled into an appropriate knowledge transfer scheme. This requires data synthesis, up-scaling, and spatial aggregation. At the research level, interactions must be considered between the effects of ozone and factors that are either directly manipulated by man through crop management, or indirectly changed. The latter include elevated atmospheric CO(2), particulate matter, other pollutants such as nitrogen oxides, UV-B radiation, climate and associated soil moisture conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号