首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97篇
  免费   3篇
安全科学   5篇
废物处理   4篇
环保管理   25篇
综合类   8篇
基础理论   17篇
污染及防治   23篇
评价与监测   9篇
社会与环境   7篇
灾害及防治   2篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   3篇
  2016年   10篇
  2015年   3篇
  2014年   1篇
  2013年   8篇
  2012年   3篇
  2011年   6篇
  2010年   8篇
  2009年   5篇
  2008年   5篇
  2007年   3篇
  2006年   4篇
  2005年   3篇
  2004年   10篇
  2003年   1篇
  2002年   2篇
  2001年   4篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1989年   1篇
  1988年   2篇
  1983年   3篇
  1979年   1篇
  1954年   1篇
排序方式: 共有100条查询结果,搜索用时 15 毫秒
1.
Multiple chemical sensitivity (MCS) is defined as a syndrome with multiple medically unexplained symptoms attributed to low levels of chemically unrelated substances in the environment. The etiology of this syndrome is still unclear. As MCS may be conceptualized as an atypical type of somatoform disorder, the purpose of the study was to examine whether MCS subjects show symptom patterns, personality traits, and perceptual and cognitive styles as typically found in somatoform patients. Nonsensitive controls (n=36) were compared to subjects with moderate (n=35) and high (n=35) MCS intensity with self-report psychological questionnaires and structured interviews for depression and somatoform disorders. The high MCS group scored significantly higher than the other two groups on self-report scales for somatoform symptoms and depression. Moreover, high MCS was strongly associated with the diagnosis of somatoform disorder, and weaker but still significantly with depression. In a stepwise multiple regression analysis, cognitions about environmental threat, trait anxiety, focus on autonomic sensations, and general environmental sensitivity predicted MCS symptoms in the total sample, explaining 53% of the variance. These results support the hypothesis that trait negativity and mechanisms of symptom perception and symptom amplification contribute to the enhanced symptom reports of MCS individuals.  相似文献   
2.
Inorganic emissions from livestock production and subsequent deposition of these ions can be a major source of pollution, causing nitrogen enrichment, eutrophication, acidification of soils and surface waters, and aerosol formation. In the poultry house, ammonia and hydrogen sulfide emissions can also adversely affect the health, performance, and welfare of both animals and human operators. The persistence and long life expectancy of ammonia, odors and toxic pollutants from poultry houses may be due to the ability of suspended particulate matter (SPM) to serve as carriers for odorous compounds such as ammonium ions and other inorganic compounds (e.g., phosphate, sulfate, nitrate, etc.). SPM is generated from the feed, animal manure, and the birds themselves. A large portion of odor associated with exhaust air from poultry houses is SPM that has absorbed odors from within the houses. Understanding the fate and transport processes of ammonia and other inorganic emissions in poultry houses is a necessary first step in utilizing the appropriate abatement strategies. In this study, the examination and characterization of ammonium ions, major components of odors and toxic gases from poultry operations, and other ions in suspended particulate matter in a broiler house were carried out using particle trap impactors. The SPM from the particle trap impactors was extracted and analyzed for its ionic species using ion chromatography (IC). The results showed concentrations of polyatomic ions in suspended particulate matter were found to increase with successive flocks and were highly concentrated in the larger size particulate matter. In addition, the ions concentrations appeared to reach a maximum at the middle of flock age (around the fourth week), tapering off toward the end in a given flock (possibly due to ventilation rates to cool off larger birds). Thus, it can be inferred that aged of bedding materials affects the ionic concentrations in aerosol particulate matter more than the age of the birds.

Implications: In the poultry house, toxic gas emissions can adversely affect the health, performance, and welfare of both animals and human operators. The persistence of these toxic pollutants from poultry houses may be due to the ability of suspended particulate matter (SPM) to serve as carriers for these compounds (inorganic ions). Our study showed that polyatomic ions in suspended particulate matter were found to increase with successive flocks and were highly concentrated in the larger size SPM. Understanding the effect of management practices on poultry air emissions will lead to innovative best management practices to safeguard the health and welfare of the animals as well as those of the poultry operators, along with reducing the impact of potential air pollution on the environment.  相似文献   

3.
4.
Growing or shrinking cities can experience increases in vacant land. As urban populations and boundaries fluctuate, holes can open in once tight urban areas. Many cities chase growth-oriented approaches to dealing with vacancies. It is critical to understand land-use alteration to accurately predict transformations of physical change in order to make better informed decisions about this phenomenon. This research utilizes the land transformation model (LTM), an artificial neural networking mechanism in Geographic Information Systems, to forecast vacant land. Variable influence on vacant land prediction and accuracy of the LTM is assessed by comparing input factors and patterns, using time-series data from 1990 to 2010 in Fort Worth, Texas, USA. Results indicate that the LTM can be useful in simulating vacant land-use changes but more precise mechanisms are necessary to increase accuracy. This will allow for more proactive decisions to better regulate the process of urban decline and regeneration.  相似文献   
5.
The construction process contributes to pollutant emissions, particularly through the operation of diesel- and gasoline-powered equipment. In the past decade, a series of investigations were undertaken to quantify these emissions for a variety of non-road construction equipment performing different activities and undergoing different duty cycles, and a model to estimate quantities of six types of pollutant was developed. This paper uses that model to estimate emissions for four street and utility construction projects which no one has done previously. We combined information from company records with standard construction industry manuals to estimate total emissions for the projects and to examine the pollution patterns and magnitudes. The street construction projects all had similar emission profiles with a large peak at the beginning and a steady output of emissions throughout the duration of the project. For example, in two of the projects studied, half of all CO2 emissions were produced before the projects were 40% completed. Results showed that demolition and earthwork are the activities with the largest contribution. The equipment types with the largest contribution are backhoes, front-end loaders, bulldozers and trenchers. Trenchers, for example, produced 30% of all emissions on the projects on which they were used.  相似文献   
6.
7.
Colloid-facilitated phosphorus (P) delivery from agricultural soils in different hydrological pathways was investigated using a series of laboratory and field experiments. A soil colloidal P test was developed that yields information on the propensity of different soils to release P attached to soil colloids. The relationship between turbidity of soil extracts and total phosphorus (TP) was significant (r2 = 0.996, p < 0.001) across a range of agricultural soils, and a strong positive relationship (r2 = 0.86, p < 0.001) was found between "colloidal P" (H2O-CaCl2 extracts) and turbidity. Linear regression of the proportion of fine clay (<2 microm) for each soil type evaluated against the (H2O-CaCl2) colloidal P fraction gave a weak but positive relationship (r2 = 0.38, p = 0.082). The relative contribution of different particle-size fractions in transporting P in agricultural runoff from grassland soils was evaluated using a randomized plot experiment. A significant difference (p = 0.05) in both TP and reactive phosphorus (RP) in subsurface flow was recorded for different particle-size fractions, with most TP transferred either in association with the 2-microm fraction or with the 0.001-microm or smaller fractions. Total P concentrations in runoff were higher from plots receiving P amendments compared with the zero-P plots; however, these differences were only significant for the >0.45-microm particle-size fractions (p = 0.05), and may be evidence of surface applications of organic and inorganic fertilizers being transferred through the soil either as intact organic colloids or attached to mineral particles. Our results highlight the potential for drainage water to mobilize colloids and associated P during rainfall events.  相似文献   
8.
For many national parks and wilderness areas with special air quality protections (Class I areas) in the western United States (U.S.), wildfire smoke and dust events can have a large impact on visibility. The U.S. Environmental Protection Agency’s (EPA) 1999 Regional Haze Rule used the 20% haziest days to track visibility changes over time even if they are dominated by smoke or dust. Visibility on the 20% haziest days has remained constant or degraded over the last 16 yr at some Class I areas despite widespread emission reductions from anthropogenic sources. To better track visibility changes specifically associated with anthropogenic pollution sources rather than natural sources, the EPA has revised the Regional Haze Rule to track visibility on the 20% most anthropogenically impaired (hereafter, most impaired) days rather than the haziest days. To support the implementation of this revised requirement, the EPA has proposed (but not finalized) a recommended metric for characterizing the anthropogenic and natural portions of the daily extinction budget at each site. This metric selects the 20% most impaired days based on these portions using a “delta deciview” approach to quantify the deciview scale impact of anthropogenic light extinction. Using this metric, sulfate and nitrate make up the majority of the anthropogenic extinction in 2015 on these days, with natural extinction largely made up of organic carbon mass in the eastern U.S. and a combination of organic carbon mass, dust components, and sea salt in the western U.S. For sites in the western U.S., the seasonality of days selected as the 20% most impaired is different than the seasonality of the 20% haziest days, with many more winter and spring days selected. Applying this new metric to the 2000–2015 period across sites representing Class I areas results in substantial changes in the calculated visibility trend for the northern Rockies and southwest U.S., but little change for the eastern U.S.

Implications: Changing the approach for tracking visibility in the Regional Haze Rule allows the EPA, states, and the public to track visibility on days when reductions in anthropogenic emissions have the greatest potential to improve the view. The calculations involved with the recommended metric can be incorporated into the routine IMPROVE (Interagency Monitoring of Protected Visual Environments) data processing, enabling rapid analysis of current and future visibility trends. Natural visibility conditions are important in the calculations for the recommended metric, necessitating the need for additional analysis and potential refinement of their values.  相似文献   

9.
10.
There is a growing demand for alternatives to Sweden’s current dominant silvicultural system, driven by a desire to raise biomass production, meet environmental goals and mitigate climate change. However, moving towards diversified forest management that deviates from well established silvicultural practices carries many uncertainties and risks. Adaptive management is often suggested as an effective means of managing in the context of such complexities. Yet there has been scepticism over its appropriateness in cases characterised by large spatial extents, extended temporal scales and complex land ownership—characteristics typical of Swedish forestry. Drawing on published research, including a new paradigm for adaptive management, we indicate how common pitfalls can be avoided during implementation. We indicate the investment, infrastructure, and considerations necessary to benefit from adaptive management. In doing so, we show how this approach could offer a pragmatic operational model for managing the uncertainties, risks and obstacles associated with new silvicultural systems and the challenges facing Swedish forestry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号