首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
废物处理   2篇
基础理论   1篇
污染及防治   10篇
  2013年   4篇
  2012年   4篇
  2010年   2篇
  2004年   2篇
  2000年   1篇
排序方式: 共有13条查询结果,搜索用时 31 毫秒
1.
The transgenic Arabidopsis plants carrying a recombinant guinea pig (g) aryl hydrocarbon receptor (AhR)-mediated β-glucuronidase (GUS) reporter gene expression system were generated for assays of polychlorinated biphenyl (PCB) congeners. The selected transgenic Arabidopsis plant XgD2V11-6 exhibited a correlation between uptake of PCB126 and PCB126-induced GUS activity. Also, the plants showed induced GUS activity towards the supplemental indole 3-acetic acid (IAA). Thus, the GUS assay may reflect induction by both endogenous and exogenous AhR ligands. When biosurfactants, MEL-B, produced in the culture of yeast isolated from plants were used for assays of PCB congeners in the transgenic Arabidopsis plants, they showed marked PCB126 dose-dependent and toxic equivalency factor (TEF) dependent GUS activities. The effects of biosurfactants were clearer when the plants were cultivated on soils containing PCB congeners for 7 days as compared with on soils for 3 days as well as in the medium for 3 days. Threfore, it was estimated that biosurfactants form micellae with PCB congeners, which are easily uptaken by the plants in a mode of passive diffusion, transport into the aerial parts and then induce GUS activity.  相似文献   
2.
Certain congeners of polychlorinated biphenyls (PCBs) and organochlorine insecticides are ligands of aryl hydrocarbon receptors (AhRs) in animals. A recombinant guinea pig (g) AhR, XgDV, was constructed by fusing the ligand-binding domain of gAhR, the DNA-binding domain of LexA, and the transactivating domain of VP16. Then, the expression unit of β-glucuronidase (GUS) reporter gene regulated by XgDV was introduced into Arabidopsis and tobacco plants. When the transgenic Arabidopsis XgDV plants were cultured on Murashige–Skoog (MS) medium containing PCB congeners, the GUS activity in the plants increased toxic equivalent (TEQ)-dependently. The GUS activity in the transgenic Arabidopsis XgDV plants cultured on MS medium containing the organochlorine insecticide dieldrin was also induced. On the other hand, in the case of DDT, the GUS activity induced by 3-methylcholanthere in the plants decreased. The transgenic Arabidopsis XgDV plants detected 1000 ng g?1 PCB126 in 1 g of soils. Thus the XgDV plants seemed to be useful for convenient assays of PCB congeners and organochlorine insecticides, without any extraction and purification steps.  相似文献   
3.
The transgenic Arabidopsis plants carrying a recombinant guinea pig (g) aryl hydrocarbon receptor (AhR)-mediated β-glucuronidase (GUS) reporter gene expression system were generated for assays of polychlorinated biphenyl (PCB) congeners. The selected transgenic Arabidopsis plant XgD2V11-6 exhibited a correlation between uptake of PCB126 and PCB126-induced GUS activity. Also, the plants showed induced GUS activity towards the supplemental indole 3-acetic acid (IAA). Thus, the GUS assay may reflect induction by both endogenous and exogenous AhR ligands. When biosurfactants, MEL-B, produced in the culture of yeast isolated from plants were used for assays of PCB congeners in the transgenic Arabidopsis plants, they showed marked PCB126 dose-dependent and toxic equivalency factor (TEF) dependent GUS activities. The effects of biosurfactants were clearer when the plants were cultivated on soils containing PCB congeners for 7 days as compared with on soils for 3 days as well as in the medium for 3 days. Therefore, it was estimated that biosurfactants form micellae with PCB congeners, which are easily uptaken by the plants in a mode of passive diffusion, transport into the aerial parts and then induce GUS activity.  相似文献   
4.
The transgenic tobacco plant XD4V-26 carrying the recombinant mouse aryl hydrocarbon receptor XD4V-mediated β-glucuronidase (GUS) reporter gene expression system was used for assay of dioxins and dioxin-like compounds consisting of polychlorodibenzo-p-dioxins, polychlorinated dibenzofurans, and coplanar polychlorinated biphenyls (Co-PCBs) in actually contaminated soils. The transgenic tobacco plant XD4V-26 showed a significant dose-dependent induced GUS activity when cultured on MS medium containing PCB126 [toxic equivalency factor (TEF) = 0.1]. In contrast, PCB169 and PCB180, which have 0.03 of TEF and unassigned TEF values, respectively, did not significantly induce GUS activity under the same conditions as with PCB126. When the tobacco plants were cultivated for up to 5 weeks on actually contaminated soils with dioxins and dioxin-like compounds collected from the periphery of an incinerator used for disposal of life and industrial wastes, GUS activity in the leaves was dose-dependently increased. The plants clearly detected 360 pg-TEQ g(-1) of dioxins and dioxin-like compounds in this assay. There was a positive correlation between GUS activity and TEQ value of dioxins and dioxin-like compounds in the plants. This assay does not require any extraction and purification processes for the actually contaminated soil samples.  相似文献   
5.
The transgenic Arabidopsis plant XgD2V11-6 carrying the recombinant guinea pig (g) aryl hydrocarbon receptor (AhR)-mediated β-glucuronidase (GUS) reporter gene expression system was examined for assay of polychlorinated biphenyl (PCB) congeners and co-contaminated heavy metals. When the transgenic Arabidopsis plants were treated with PCB126 (toxic equivalency factor; TEF: 0.1) and PCB169 (TEF: 0.03), the GUS activity of the whole plants was increased significantly. After treatment with PCB80 (TEF: 0), the GUS activity was nearly the same level as that treated with 0.1% dimethylsulfoxide (DMSO) as a vehicle control. After exposure to a 1:1 mixture of PCB126 and PCB169, the GUS activity was increased additively. However, after exposure to a mixture of PCB126 and PCB80, the GUS activity was lower than that of the treatment with PCB126 alone. Thus, PCB80 seemed to be an antagonist towards AhR. When the transgenic plants were treated with each of the heavy metals Fe, Cu, Zn, Cd and Pb together with PCB126, Cd and Pb increased the PCB126-induced GUS activity. On the other hand, Fe, Cu and Zn did not affect the PCB126-induced GUS activity. In the presence of the biosurfactant mannosylerythritol lipid-B (MEL-B) and the carrier protein bovine serum albumin (BSA), the PCB126-induced GUS activity was increased, but the Cd-assisted PCB126-induced GUS activity was not affected. Thus, MEL-B and BSA seemed to increase uptake and transport of PCB126, respectively.  相似文献   
6.
The transgenic tobacco plant XD4V-26 carrying the recombinant mouse aryl hydrocarbon receptor XD4V-mediated β-glucuronidase (GUS) reporter gene expression system was used for assay of dioxins and dioxin-like compounds consisting of polychlorinated dibenzeno-p-dioxins, polychlorinated dibenzofurans, and coplanar polychlorinated biphenyls (Co-PCBs) in actually contaminated soils. The transgenic tobacco plant XD4V-26 showed a significant dose-dependent induced GUS activity when cultured on MS medium containing PCB126 [toxic equivalency factor (TEF) = 0.1]. In contrast, PCB169 and PCB180, which have 0.03 of TEF and unassigned TEF values, respectively, did not significantly induce GUS activity under the same conditions as with PCB126. When the tobacco plants were cultivated for up to 5 weeks on actually contaminated soils with dioxins and dioxin-like compounds collected from the periphery of an incinerator used for disposal of residential and industrial wastes, GUS activity in the leaves was dose-dependently increased. The plants clearly detected 360 pg-TEQ g(-1) of dioxins and dioxin-like compounds in this assay. There was a positive correlation between GUS activity and TEQ value of dioxins and dioxin-like compounds in the plants. This assay does not require any extraction and purification processes for the actually contaminated soil samples.  相似文献   
7.
Four expression plasmids for recombinant human aryl hydrocarbon receptor (hAhR) consisting of a ligand binding domain of hAhR, a DNA-binding domain of LexA and a transactivation domain of VP16 as well as β-glucuronidase (GUS) reporter genes were constructed. All the expression plasmids were transformed into tobacco plants. The selected transgenic tobacco plants were used to assay. PCB congeners showed GUS activity in a TEF-dependent manner. The selected transgenic tobacco plant XhD4V17 was compared with the transgenic tobacco plants XmD4V26 and XgD2V23 containing recombinant mouse (m) AhR-mediated GUS reporter gene expression cassette and recombinant guinea pig (g) AhR-mediated GUS reporter gene expression cassette for PCB congener-inducible GUS activity. The data revealed that the tobacco plant XgD2V23 was the most active in PCB congener-inducible GUS activity. In a 1:1 mixture of PCB126 and PCB80 a reduced PCB126-induced GUS activity was observed in plant XgD2V23, which could possibly be due to interaction between PCB126 and PCB80.  相似文献   
8.
The transgenic Arabidopsis plant XgD2V11-6 carrying the recombinant guinea pig (g) aryl hydrocarbon receptor (AhR)-mediated β-glucuronidase (GUS) reporter gene expression system was examined for assay of polychlorinated biphenyl (PCB) congeners and co-contaminated heavy metals. When the transgenic Arabidopsis plants were treated with PCB126 (toxic equivalency factor; TEF: 0.1) and PCB169 (TEF: 0.03), the GUS activity of the whole plants was increased significantly. After treatment with PCB80 (TEF: 0), the GUS activity was nearly the same level as that treated with 0.1% dimethylsulfoxide (DMSO) as a vehicle control. After exposure to a 1:1 mixture of PCB126 and PCB169, the GUS activity was increased additively. However, after exposure to a mixture of PCB126 and PCB80, the GUS activity was lower than that of the treatment with PCB126 alone. Thus, PCB80 seemed to be an antagonist towards AhR. When the transgenic plants were treated with each of the heavy metals Fe, Cu, Zn, Cd and Pb together with PCB126, Cd and Pb increased the PCB126-induced GUS activity. On the other hand, Fe, Cu and Zn did not affect the PCB126-induced GUS activity. In the presence of the biosurfactant mannosylerythritol lipid-B (MEL-B) and the carrier protein bovine serum albumin (BSA), the PCB126-induced GUS activity was increased, but the Cd-assisted PCB126-induced GUS activity was not affected. Thus, MEL-B and BSA seemed to increase uptake and transport of PCB126, respectively.  相似文献   
9.
The biodegradation of electrospun nano-fibers of poly(-caprolactone) (PCL) was initially investigated with respect to the environmental application of PCL non-woven fabrics, using pure-cultured soil filamentous fungi, Aspergillus oryzae, Penicillium caseicolum, P. citrinum, Mucor sp., Rhizopus sp., Curvularia sp., and Cladosporium sp. Three kinds of non-woven PCL fabrics with different mean fiber diameters (330, 360, and 510 nm) were prepared by changing the viscosities of the pre-spun PCL solutions (150, 210, and 310 cPs, respectively). All of the pure-line soil filamentous fungi tested grew on the two fiber materials. Electron microscopy was used to observe the biodegradation processes revealing remarkable growth of two fungi, Rhizopus sp. and Mucor sp., along with the accompanying collapse of the nano-fiber matrices. In the biochemical oxygen demand (BOD) test, the biodegradation of the 330 nm PCL nano-fibers by Rhizopus sp. and Mucor sp. exceeded 20 and 30% carbon dioxide generation, respectively. The biodegradability of the PCL non-woven fabrics decreased with the mean fiber diameter and the 330 nm PCL nano-fiber that was made from 150 cPs solution (concentration, 7 wt%) exhibited the highest biodegradability. These results might offer some clues for the applications of the PCL non-woven fabrics having the controlled biodegradability in the environmental uses.  相似文献   
10.
监测和净化难分解性有机污染物质的植物基因工程技术   总被引:1,自引:0,他引:1  
介绍了植物基因工程技术在监测和净化难分解性有机污染物质方面的研究进展。生物中存在着能降解难分解性有机污染物质的酶及其编码基因,具有识别和除去难分解性有机污染物质的免疫系统、受体和响应元件。这方面的研究工作多以哺乳动物为材料,植物的相关研究还处于起步阶段。创造环境监测和环境污染净化为目标的新型植物将成为转基因植物研究的极其重要的研究方向之一。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号