首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  国内免费   2篇
综合类   2篇
污染及防治   1篇
  2021年   2篇
  2016年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
A network of air quality and weather monitoring stations was established under the System of Air Quality Forecasting and Research(SAFAR) project in Delhi. We report observations of ozone(O_3), nitrogen oxides(NO_x), carbon monoxide(CO) and particulate matter(PM_2.5and PM_(10)) before, during and after the Diwali in two consecutive years, i.e., November 2010 and October 2011. The Diwali days are characterised by large firework displays throughout India. The observations show that the background concentrations of particulate matter are between 5 and 10 times the permissible limits in Europe and the United States. During the Diwali-2010, the highest observed PM_(10) and PM_2.5mass concentration is as high as2070 μg/m~3 and 1620 μg/m3, respectively(24 hr mean), which was about 20 and 27 times to National Ambient Air Quality Standards(NAAQS). For Diwali-2011, the increase in PM_(10) and PM_2.5mass concentrations was much less with their peaks of 600 and of 390 μg/m~3 respectively, as compared to the background concentrations. Contrary to previous reports,firework display was not found to strongly influence the NO_x, and O_3 mixing ratios, with the increase within the observed variability in the background. CO mixing ratios showed an increase. We show that the large difference in 2010 and 2011 pollutant concentrations is controlled by weather parameters.  相似文献   
2.
Environmental Science and Pollution Research - Fly ash, a result of coal burning in thermal power plants, is sustainably used in agriculture and has been regarded as a problematic solid waste...  相似文献   
3.
The world's top ranked mega city Delhi is known for deteriorated air quality. However, the analysis of air pollution data of 5 years (2014–2018) reveals that years 2016 and 2017, which were marked by an unusual delayed withdrawal of monsoon, witnessed an unprecedented extreme levels of toxic PM2.5 particles (≤2.5 µm in diameter) touching a peak level of 760 µg/m3 (24 hr average), immediately after the monsoon retreat, surpassing WHO standards by 30 time and Indian national standards by 12 times, jeopardising lives of its citizens. However, the normal monsoon withdrawal years do not show such extreme levels of pollution. The high resolution WRF-Chem model along with meteorological data are used in this work to understand that how the delayed monsoon withdrawal and associated vagarious anti-cyclonic circulation resulted in trapping externally generated pollutants ceaselessly under colder conditions, leading to historic air quality crisis in landlocked mega city in these selected years. The sensitivity analysis confirmed that when WRF-chem model forced the climatology of normal monsoon year (2015) to simulate the pollution scenario of 2016 and 2017 for the above time period, the crisis subsided. Present findings suggest that such unusual monsoon patterns are on the hook to spur extreme pollution events in recent time.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号