首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
基础理论   3篇
污染及防治   5篇
评价与监测   2篇
社会与环境   1篇
  2021年   2篇
  2017年   1篇
  2013年   3篇
  2012年   1篇
  2008年   1篇
  2002年   1篇
  2000年   2篇
排序方式: 共有11条查询结果,搜索用时 31 毫秒
1.
Human impacts on methane emission from mangrove ecosystems in India   总被引:4,自引:0,他引:4  
This study deals with the emission of methane in relation to changing environmental conditions and human impact, in three mangrove ecosystems of south India. Time-varying fluxes of methane adopting the close chamber technique were used to estimate CH4 emission from an unpolluted site (Pichavaram mangroves) and two polluted sites viz. (1) Ennore Creek mangroves (affected by fertilizer effluents and crude oil discharges) and (2) Adyar estuary mangroves (affected by the discharges of organic and industrial wastes), covering monthly and seasonal variations. The results indicate annual average CH4 emissions of 7.4, 5.02 and 15.4 mg m−2 h−1 from the sediment–water interface of the Pichavaram, Ennore Creek and Adyar estuary respectively. Emission characteristics obtained at Pichavaram mangroves represent a natural variability with changing physico-chemical factors, whereas the emission characteristics at Ennore Creek and Adyar estuary mangroves show anthropogenic influence. Several environmental factors such as oxygen availability, organic matter, soil physical and chemical properties, in addition to human-mediated interventions have been identified as influencing emission rates in the mangrove ecosystems. Preliminary CH4 emission estimates for the mangrove ecosystems along the Indian sub- continent and the tropical and subtropical coastline of the world by linear extrapolation based on surface area range from 0.05 to 0.37 and 2.8 to 19.25 Tg CH4 year−1 respectively. Our results also highlight the impact of human activities on future emission of methane from the mangrove ecosystems. Received: 3 March 1999 / Accepted: 14 September 1999  相似文献   
2.
Abstract

Spatial and temporal variations and the factors influencing primary production have been studied in three different mangrove waters (Pichavaram, Ennore Creek and Adyar Estuary) of South India characterised by different anthropogenic impacts. the gross primary productivity in the unpolluted Pichavaram mangrove was 113 g Cm?2yr?1 exhibiting natural variability with the environmental forcing factors. Human activities have elevated primary productivity in the Ennore Creek mangrove (157g Cm?2yr?1) primarily through the direct discharge of fertilizer effluents. By contrast, a combination of domestic and industrial effluent discharges into the Adyar Estuary mangrove has considerably reduced phytoplankton primary productivity 83g Cm?2yr?1 the Redfield N: P ratio varies from 0.96 N: 1P at Ennore Creek, 1.75N: 1P at Adyar Estuary to 15.2 N: 1P at Pichavaram mangroves. This suggests that the Pichavaram mangroves represent a well equilibrated ecosystem with N: P ratio close to steady-state values in contrast to the anthropogenically altered mangrove ecosystems studied. Results show a significant temporal variability in nutrient concentration in the three mangrove areas. Distinct differences in nutrient concentrations between the dry and the wet seasons have been observed.  相似文献   
3.
Environmental Science and Pollution Research - Efficient nutrient cycling and adequate sediment bioavailable nutrient supply are considered to be the two most important factors regulating the high...  相似文献   
4.
Spatial and temporal variations and the factors influencing primary production have been studied in three different mangrove waters (Pichavaram, Ennore Creek and Adyar Estuary) of South India characterised by different anthropogenic impacts. the gross primary productivity in the unpolluted Pichavaram mangrove was 113 g Cm-2yr-1 exhibiting natural variability with the environmental forcing factors. Human activities have elevated primary productivity in the Ennore Creek mangrove (157g Cm-2yr-1) primarily through the direct discharge of fertilizer effluents. By contrast, a combination of domestic and industrial effluent discharges into the Adyar Estuary mangrove has considerably reduced phytoplankton primary productivity 83g Cm-2yr-1 the Redfield N: P ratio varies from 0.96 N: 1P at Ennore Creek, 1.75N: 1P at Adyar Estuary to 15.2 N: 1P at Pichavaram mangroves. This suggests that the Pichavaram mangroves represent a well equilibrated ecosystem with N: P ratio close to steady-state values in contrast to the anthropogenically altered mangrove ecosystems studied. Results show a significant temporal variability in nutrient concentration in the three mangrove areas. Distinct differences in nutrient concentrations between the dry and the wet seasons have been observed.  相似文献   
5.
Seventeen sediment cores were collected from different coastalecosystems of Tamil Nadu, India that include coastal lagoon (Pulicat), polluted rivers in Chennai (Adyar and Cooum), Coral reef (Gulf of Mannar) and a perennial river (Tamiraparani).Radiometric dating has been used to determine the modern sedimentation rates in these ecosystems. The Pulicat Lake and thepolluted rivers (Adyar and Cooum) yield an average sediment accumulation rate of 12.34 and 7.85 mm yr-1, respectively. Inthe Gulf of Mannar coral reef, the sedimentation rate averages 17.37 mm yr-1, while the rate in Tamiraparani River is 11.00 mm yr-1. In the Tamiraparani River basin, the deposition rates were an order of magnitude higher when compared to the erosion rates, which may be due to bank erosion and the intense human activity. In general high rates of sedimentation observed in the coastal ecosystems not only reflect the capacity of the coastal regions as sinks for trace metals but also denoteincreased input of pollutants into the coastal environments in the recent past. The deposition rates of heavy metals – Fe, Mn,Zn, Cu, Cr and Ni in the depth profiles have been computed using sedimentation rates and their distribution is discussed. It can be seen that the mean deposition rates of all the measured elements in the Tamil Nadu coastal ecosystems are high compared with rates determined for the sediments of the deltaic regions ofIndia and the Bay of Bengal.  相似文献   
6.
The geochemical distribution and enrichment of ten heavy metals in the surface sediments of Vembanad Lake, southwest coast of India was evaluated. Sediment samples from 47 stations in the Lake were collected during dry and wet seasons in 2008 and examined for heavy metal content (Al, Fe, Mn, Cr, Zn, Ni, Pb, Cu, Co, Cd), organic carbon, and sediment texture. Statistically significant spatial variation was observed among all sediment variables, but negligible significant seasonal variation was observed. Correlation analysis showed that the metal content of sediments was mainly regulated by organic carbon, Fe oxy-hydroxides, and grain size. Principal component analysis was used to reduce the 14 sediment variables into three factors that reveal distinct origins or accumulation mechanisms controlling the chemical composition in the study area. Pollution intensity of the Vembanad Lake was measured using the enrichment factor and the pollution load index. Severe and moderately severe enrichment of Cd and Zn in the north estuary with minor enrichment of Pb and Cr were observed, which reflects the intensity of the anthropogenic inputs related to industrial discharge into this system. The results of pollution load index reveal that the sediment was heavily polluted in northern arm and moderately polluted in the extreme end and port region of the southern arm of the lake. A comparison with sediment quality guideline quotient was also made, indicating that there may be some ecotoxicological risk to benthic organisms in these sediments.  相似文献   
7.
Megacities are not only important drivers for socio-economic development but also sources of environmental challenges. Many megacities and large urban agglomerations are located in the coastal zone where land, atmosphere, and ocean meet, posing multiple environmental challenges which we consider here. The atmospheric flow around megacities is complicated by urban heat island effects and topographic flows and sea breezes and influences air pollution and human health. The outflow of polluted air over the ocean perturbs biogeochemical processes. Contaminant inputs can damage downstream coastal zone ecosystem function and resources including fisheries, induce harmful algal blooms and feedback to the atmosphere via marine emissions. The scale of influence of megacities in the coastal zone is hundreds to thousands of kilometers in the atmosphere and tens to hundreds of kilometers in the ocean. We list research needs to further our understanding of coastal megacities with the ultimate aim to improve their environmental management.  相似文献   
8.
Municipal solid waste generation rate is over-riding the population growth rate in all mega-cities in India. Greenhouse gas emission inventory from landfills of Chennai has been generated by measuring the site specific emission factors in conjunction with relevant activity data as well as using the IPCC methodologies for CH4 inventory preparation. In Chennai, emission flux ranged from 1.0 to 23.5mg CH4m(-2)h(-1), 6 to 460microg N2Om(-2)h(-1) and 39 to 906mg CO2m(2)h(-1) at Kodungaiyur and 0.9 to 433mg CH4m(-2)h(-1), 2.7 to 1200microg N2Om(-2)h(-1) and 12.3 to 964.4mg CO2m(-2)h(-1) at Perungudi. CH4 emission estimates were found to be about 0.12Gg in Chennai from municipal solid waste management for the year 2000 which is lower than the value computed using IPCC, 1996 [IPCC, 1996. Report of the 12th session of the intergovernmental panel of climate change, Mexico City, 1996] methodologies.  相似文献   
9.
Net ecosystem metabolism and subsequent changes in environmental variables were studied seasonally in the seagrass-dominated Palk Bay, located along the southeast coast of India. The results showed that although the water column was typically net heterotrophic, the ecosystem as a whole displayed autotrophic characteristics. The mean net community production from the seagrass meadows was 99.31 ± 45.13 mM C m?2 d?1, while the P/R ratio varied between 1.49 and 1.56. Oxygen produced through in situ photosynthesis, exhibited higher dependence over dissolved CO2 and available light. Apportionment of carbon stores in biomass indicated that nearly three-fourths were available belowground compared to aboveground. However, the sediment horizon accumulated nearly 40 times more carbon than live biomass. The carbon storage capacities of the sediments and seagrass biomass were comparable with the global mean for seagrass meadows. The results of this study highlight the major role of seagrass meadows in modification of seawater chemistry. Though the seagrass meadows of Palk Bay are increasingly subject to human impacts, with coupled regulatory and management efforts focused on improved water quality and habitat conservation, these key coastal ecosystems will continue to be valuable for climate change mitigation, considering their vital role in C dynamics and interactions with the overlying water column.  相似文献   
10.
Metal pollution produces damage to marine organisms at the cellular level possibly leading to ecological imbalance. The present investigation focused on the acute and chronic toxicity of lead (Pb) and zinc (Zn) by examining the effects of biomarker enzymes in post-larvae of Penaeus monodon (Tiger prawn). Antioxidant biomarker responses such as lipid peroxidation (LPO) and catalase (CAT) activity for Pb and Zn were determined following chronic exposure. Acute Lethal Concentration 50 (LC50) values observed in the study at 96?h for Pb and Zn at 5.77?±?0.32?mg?L?1 and 3.02?±?0.82?mg?L?1, respectively. The estimated No Observed Effect Concentration and Lowest Observed Effect Concentration values for Pb were 0.014 and 0.029?mg?L?1 and that recorded for Zn was 0.011 and 0.022?mg?L?1, respectively. Among the two metals studied, toxicity of Zn was found to be greater to P. monodon than Pb. The activities of antioxidant defense enzymes and total protein content differed significantly from control following exposure to both metals. Overall, the biomarker studies demonstrated that alterations in antioxidant enzymes and induction of LPO reflect the consequences of heavy metal exposure in P. monodon.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号