首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  国内免费   1篇
综合类   1篇
污染及防治   1篇
  2022年   2篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
为了探究硫自养生物过程对水中锑酸盐的去除效能,建立升流式硫自养固定床生物反应器,考察水力停留时间(HRT)对Sb(Ⅴ)和总Sb去除性能的影响,监测分析出水pH值、碱度消耗量变化规律和含硫副产物的产生趋势,利用扫描电镜和拉曼光谱分析表征推测反应机理.结果表明:(1)当进水锑酸盐Sb(Ⅴ)浓度为(1028.07±43.39)μg·L-1,HRT为8 h时,经过10~15 d的适应期,反应器对Sb(Ⅴ)去除率可达到94.37%±0.57%,总Sb去除率为47.03%±1.54%,当HRT由8 h缩短为6 h时,反应器对Sb(Ⅴ)去除率可达到90.60%±1.09%,总Sb去除率为12.79%±1.65%.(2)反应器出水硫酸盐超过理论值,表明有硫歧化反应发生,当HRT由8 h缩短为6 h时,碱度消耗量下降至(66.83±6.31)mg·L-1,对应pH值降低至7.29±0.09;出水SO42-浓度出现大幅下降,SO42-增量由(80.02±1.62)mg·L  相似文献   
2.

At present, tetracycline hydrochloride (TCH) is a widely used antibiotic, and is often detected in water, posing a serious harm to human and ecological health. In this study, spent bleaching earth (SBE) was pyrolyzed to obtain spent bleaching earth carbon (SBE@C) and the nano Fe0/SBE@C prepared after zero-valent iron loading was adopted to remove TCH in water for the first time. The combination of nano Fe0/SBE@C and PS, the strong adsorption of SBE@C coupled with the oxidation of free radicals could achieve TCH efficient removal. The effects of nano Fe0 load, nano Fe0/SBE@C dosage, solution initial pH, and PS/TCH molar ratio on TCH removal efficiency in nano Fe0/SBE@C?+?PS system were studied. The results indicate that the optimal reaction conditions are 5% nano Fe0 load, 0.2 g/L nano Fe0/SBE@C dosage, initial pH of 3, PS/TCH molar ratio of 100:1. Under these conditions, TCH removal efficiency could reach 91%. Meanwhile, response surface methodology (RSM) was applied to predict optimal value of reaction conditions. The removal efficiency corresponding to the predicted optimal conditions was consistent with the actual removal efficiency obtained from the experiment. Moreover, six reaction systems were tested, and TCH removal efficiency in the SBE@C?+?PS system was 22.6%. When nano Fe0 was loaded on SBE@C, TCH removal efficiency in Fe0/SBE@C?+?PS system increased to 78.2%, in which TCH was first adsorbed on the surface of nano Fe0/SBE@C, and then was degraded by the oxidation of SO4?? and ?OH. Totally, the nano Fe0/SBE@C?+?PS system displayed excellent TCH removal efficiency, good stability and reusability, exhibiting a promise toward TCH removal.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号