首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   3篇
  国内免费   1篇
安全科学   1篇
废物处理   14篇
环保管理   1篇
综合类   4篇
基础理论   10篇
污染及防治   2篇
评价与监测   4篇
社会与环境   4篇
  2019年   1篇
  2018年   4篇
  2017年   3篇
  2016年   3篇
  2015年   3篇
  2014年   3篇
  2013年   5篇
  2012年   4篇
  2011年   4篇
  2010年   4篇
  2008年   1篇
  2007年   3篇
  2003年   1篇
  2002年   1篇
排序方式: 共有40条查询结果,搜索用时 739 毫秒
1.
Approaches to prioritize conservation actions are gaining popularity. However, limited empirical evidence exists on which species might benefit most from threat mitigation and on what combination of threats, if mitigated simultaneously, would result in the best outcomes for biodiversity. We devised a way to prioritize threat mitigation at a regional scale with empirical evidence based on predicted changes to population dynamics—information that is lacking in most threat‐management prioritization frameworks that rely on expert elicitation. We used dynamic occupancy models to investigate the effects of multiple threats (tree cover, grazing, and presence of an hyperaggressive competitor, the Noisy Miner (Manorina melanocephala) on bird‐population dynamics in an endangered woodland community in southeastern Australia. The 3 threatening processes had different effects on different species. We used predicted patch‐colonization probabilities to estimate the benefit to each species of removing one or more threats. We then determined the complementary set of threat‐mitigation strategies that maximized colonization of all species while ensuring that redundant actions with little benefit were avoided. The single action that resulted in the highest colonization was increasing tree cover, which increased patch colonization by 5% and 11% on average across all species and for declining species, respectively. Combining Noisy Miner control with increasing tree cover increased species colonization by 10% and 19% on average for all species and for declining species respectively, and was a higher priority than changing grazing regimes. Guidance for prioritizing threat mitigation is critical in the face of cumulative threatening processes. By incorporating population dynamics in prioritization of threat management, our approach helps ensure funding is not wasted on ineffective management programs that target the wrong threats or species.  相似文献   
2.
The co-digestion of a variable amount of fruit and vegetable waste in a waste mixed sludge digester was investigated using a pilot scale apparatus. The organic loading rate (OLR) was increased from 1.46 kg VS/m3 day to 2.8 kg VS/m3 day. The hydraulic retention time was reduced from 14 days to about 10 days. Specific bio-methane production increased from about 90 NL/kg VS to the maximum value of about 430 NL/kg VS when OLR was increased from 1.46 kg VS/m3 day to 2.1 kg VS/m3 day. A higher OLR caused an excessive reduction in the hydraulic retention time, enhancing microorganism wash out. Process stability evaluated by the total volatile fatty acids concentration (mg/l) to the alkalinity buffer capacity (eq. mg/l CaCO3) ratio (i.e. FOS/TAC) criterion was <0.1 indicating high stability for OLR <2.46 kg VS/m3 day. For higher OLR, FOS/TAC increased rapidly. Residual phytotoxicty of the digestate evaluated by the germination index (GI) (%) was quite constant for OLR < 2.46 kg VS/m3 day, which is lower than the 60% limit, indicating an acceptable toxicity level for crops. For OLR > 2.46 kg VS/m3 day, GI decreased rapidly. This corresponding trend between FOS/TAC and GI was further investigated by the definition of the GI ratio (GIR) parameter. Comparison between GIR and FOS/TAC suggests that GI could be a suitable criterion for evaluating process stability.  相似文献   
3.
An environmental assessment of six scenarios for handling of garden waste in the Municipality of Aarhus (Denmark) was performed from a life cycle perspective by means of the LCA-model EASEWASTE. In the first (baseline) scenario, the current garden waste management system based on windrow composting was assessed, while in the other five scenarios alternative solutions including incineration and home composting of fractions of the garden waste were evaluated. The environmental profile (normalised to Person Equivalent, PE) of the current garden waste management in Aarhus is in the order of −6 to 8 mPE Mg−1 ww for the non-toxic categories and up to 100 mPE Mg−1 ww for the toxic categories. The potential impacts on non-toxic categories are much smaller than what is found for other fractions of municipal solid waste. Incineration (up to 35% of the garden waste) and home composting (up to 18% of the garden waste) seem from an environmental point of view suitable for diverting waste away from the composting facility in order to increase its capacity. In particular the incineration of woody parts of the garden waste improved the environmental profile of the garden waste management significantly.  相似文献   
4.
The particulate organic matter distribution and its elemental composition in the northern and central Adriatic Sea during different seasonal periods are shown, highlighting the principal processes and factors influencing their distribution and characteristics. In the low salinity waters the concentrations of particulate carbon, nitrogen and phosphorus were higher and more variable than in the dense waters, mainly due to dilution effects which induce an abundant phytoplankton growth. Generally in summer the particulate organic matter distribution followed the trophic gradient while in winter resuspension events often became more important. Differences between summer and winter were more evident in the diluted waters and were mainly due to the seasonal heat exchanges and to the fresh water inputs. Marked differences in C/P ratios were observed in the POM: high ratios in the northern diluted waters and low in the more saline waters and in the central Adriatic.  相似文献   
5.
Mass balances and life cycle inventory of home composting of organic waste   总被引:1,自引:0,他引:1  
A comprehensive experimental setup with six single-family home composting units was monitored during 1 year. The composting units were fed with 2.6-3.5 kg organic household waste (OHW) per unit per week. All relevant consumptions and emissions of environmental relevance were addressed and a full life-cycle inventory (LCI) was established for the six home composting units. No water, electricity or fuel was used during composting, so the major environmental burdens were gaseous emissions to air and emissions via leachate. The loss of carbon (C) during composting was 63-77% in the six composting units. The carbon dioxide (CO(2)) and methane (CH(4)) emissions made up 51-95% and 0.3-3.9% respectively of the lost C. The total loss of nitrogen (N) during composting was 51-68% and the nitrous oxide (N(2)O) made up 2.8-6.3% of this loss. The NH(3) losses were very uncertain but small. The amount of leachate was 130 L Mg(-1) wet waste (ww) and the composition was similar to other leachate compositions from home composting (and centralised composting) reported in literature. The loss of heavy metals via leachate was negligible and the loss of C and N via leachate was very low (0.3-0.6% of the total loss of C and 1.3-3.0% of the total emitted N). Also the compost composition was within the typical ranges reported previously for home composting. The level of heavy metals in the compost produced was below all threshold values and the compost was thus suitable for use in private gardens.  相似文献   
6.
In this paper, an analysis of air quality data is provided for the municipal area of Taranto (southern Italy) characterized by high environmental risks as formally decreed by the Italian government in the 1990s with two administrative measures. This is due to the massive presence of industrial sites with elevated environmental impact activities along the NW boundary of the city conurbation. The aforementioned activities have effects on the environment and on public health, as a number of epidemiological researches concerning this area reconfirm. The present study is focused on particulate matter as measured by PM10 concentrations at 13 monitoring stations, equipped with analogous instruments based on the Beta absorption technology, either reporting hourly, two-hourly, or daily measurements. Daily estimates of the PM10 concentration surfaces are obtained in order to identify areas of higher concentration (hot spots), possibly related to specific anthropic activities. Preliminary analysis involved addressing several data problems: (1) due to the use of two different validation techniques, a calibration procedure was devised to allow for data comparability; (2) imputation techniques were considered to cope with the large number of missing data, due to both different working periods and occasional malfunctions of PM10 sensors; and (3) reliable weather covariates (wind speed and direction, pressure, temperature, etc.) were obtained and considered within the analysis. Spatiotemporal modelling was addressed by a Bayesian kriging-based model proposed by Le and Zidek (2006) characterized by the use of time varying covariates and a semiparametric covariance structure. Advantages and disadvantages of the model are highlighted and assessed in terms of fit and performance. Estimated daily PM10 concentration surfaces are suitable for the interpretation of time trends and for identifying concentration peaks within the urban area.  相似文献   
7.
Environmental Science and Pollution Research - In recent years, the occurrence of microplastics in the aquatic environment has gathered increasing scientific interest. Several studies have shown...  相似文献   
8.
The river continuum concept represents the most general framework addressing the spatial variation of both structure and function in river ecosystems.In the Mediterranean ecoregion,summer drought events and dams constitute the main sources of local disturbance to the structure and functioning of river ecosystems occurring in the river basin.In this study,we analysed patterns of spatial variation of detritus processing in a 7th order river of the Mediterranean ecoregion(River Tirso,Sardinia0Italy)and in three 4th order sub-basins which were exposed to different summer drought pressures.The study was carried out on phragmites australis and Alnus glutionsa leaf detritus at 31 field sites in seasonal field experiment Detritus processing rates were higher for Alnus glutionsa than for Phragmites australis plant detritus.Processing rates of Alnus glutionsa leaves varied among seasons and study sites from 0.006d^-1 to 0.189d^-1 and those of Phragmites australis leaves ranged from 0.0008d^-1 to 0.102d^-1,with the lowest values occurring at sites exposed to summer drought.Seasons and sites accounted for a significant proportion of such variability.Alder detritus decay rates generally decreased with increasing stream order,while reed detritus decay rates generallyincreased on the same spatial gradient.Summer drought events affected these spatial patterns of variation by influencing significantly the decay rates of both plant detritus.The comparisons among and within sub-basins showed strong negative influence of summer drought on detritus processing rates.Similarly,in the entire River Tirso basin decay rates were always lower at disturbed than at undisturbed sites for each stream order;decay rates of reed detritus remained lower at those sites even after the end of the disturbance events,while alder decay rates recovered rapidly from the summer drought perturbations.The different recovery of the processing rates of the two leaves could also explain the different patterns of spatial variation observed between the two leaves.  相似文献   
9.
The emission of greenhouse gases (GHGs) is a potential environmental disadvantage of home composting. Because of a lack of reliable GHG emission data, a comprehensive experimental home composting system was set up. The system consisted of six composting units, and a static flux chamber method was used to measure and quantify the GHG emissions for one year composting of organic household waste (OHW). The average OHW input in the six composting units was 2.6–3.5 kg week?1 and the temperature inside the composting units was in all cases only a few degrees (2–10 °C) higher than the ambient temperature. The emissions of methane (CH4) and nitrous oxide (N2O) were quantified as 0.4–4.2 kg CH4 Mg?1 input wet waste (ww) and 0.30–0.55 kg N2O Mg?1 ww, depending on the mixing frequency. This corresponds to emission factors (EFs) (including only CH4 and N2O emissions) of 100–239 kg CO2-eq. Mg?1 ww. Composting units exposed to weekly mixing had the highest EFs, whereas the units with no mixing during the entire year had the lowest emissions. In addition to the higher emission from the frequently mixed units, there was also an instant release of CH4 during mixing which was estimated to 8–12% of the total CH4 emissions. Experiments with higher loads of OHW (up to 20 kg every fortnight) entailed a higher emission and significantly increased overall EFs (in kg substance per Mg?1 ww). However, the temperature development did not change significantly. The GHG emissions (in kg CO2-eq. Mg?1 ww) from home composting of OHW were found to be in the same order of magnitude as for centralised composting plants.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号