首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   4篇
  国内免费   15篇
安全科学   2篇
环保管理   8篇
综合类   36篇
基础理论   3篇
污染及防治   6篇
评价与监测   1篇
  2023年   1篇
  2022年   1篇
  2021年   5篇
  2020年   10篇
  2019年   6篇
  2018年   2篇
  2017年   1篇
  2015年   4篇
  2014年   1篇
  2013年   4篇
  2012年   1篇
  2009年   1篇
  2008年   4篇
  2007年   1篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  2001年   3篇
  2000年   5篇
排序方式: 共有56条查询结果,搜索用时 15 毫秒
1.
结合紫外分光光度法研究系列羟基卟啉与汞离子的显色反应,并优化其检测条件.在pH=7.5的条件下,以N,N-二甲基甲酰胺(DMF)作为溶剂,加入0.4 mL表面活性剂Tween-80,系列羟基卟啉与Hg2+发生配位反应,发现其最大吸收峰与卟啉环上(meso)位苯基对位上的羟基数目相关.热力学研究表明,单羟基卟啉化合物对Hg2+检测效果最好,形成1∶1配位化合物,检测限可达0.042μg.L-1,且在0—50 mg.L-1范围内符合比尔定律.  相似文献   
2.
成都市城区大气VOCs季节污染特征及来源解析   总被引:10,自引:10,他引:0  
为研究成都市城区大气VOCs季节变化特征,本研究在2018年12月至2019年11月对VOCs组分进行监测,并对VOCs的浓度水平、各化学组成、化学反应活性和来源进行分析.结果表明,成都市城区春、夏、秋和冬季VOCs的平均体积分数分别为32.29×10~(-9)、 36.25×10~(-9)、 40.92×10~(-9)和49.48×10~(-9),冬季的浓度明显高于其他季节,春季和夏季的浓度水平相差不大,各季节VOCs的组分浓度水平有所差异,冬季烷烃占总VOCs的比例最大,可能受机动车排放的影响较明显;夏季和秋季含氧(氮)挥发性有机物占比远高于春、冬季,一次源的挥发排放和二次转化的生成贡献较大;成都市城区不同季节大气中VOCs平均浓度排名靠前的关键组分基本无变化,主要是C_2~C_4的烷烃、乙烯、乙炔及二氯甲烷等,可能受机动车尾气、油气挥发、溶剂使用和LPG燃料等影响明显,夏季丙酮以及乙酸乙酯等含氧有机物浓度贡献突出;根据·OH消耗速率和OFP计算可知关键活性物种主要为间/对-二甲苯、乙烯、丙烯、1-己烯、甲苯、异戊烷和正丁烷等,这些物种应该优先减排和控制;四季VOCs源解析结果显示:春、夏季温度较秋、冬季高,光照更强,PMF明显解析出天然源和二次排放贡献,同时,由于夏季温度较高,解析出油气挥发占9%;秋、冬季占比增加的源主要为机动车尾气和燃烧源,燃烧源的排放占比在25%左右,另餐饮源的排放占比在9%左右.  相似文献   
3.
钱骏  徐晨曦  陈军辉  姜涛  韩丽  王成辉  李英杰  王波  刘政 《环境科学》2021,42(12):5736-5746
2020年4月24日至5月6日成都市臭氧(O3)和细颗粒物(PM2.5)复合污染过程期间,在成都市城区开展大气臭氧及其前体物(NO,、VOCs)和气象参数观测实验,基于观测数据采用OBM模型对市区臭氧敏感性和主控因子进行识别,并采用PMF模型对关键VOCs物种进行来源解析.结果表明,臭氧超标日各污染物浓度均有所上升,VOCs物种中芳香烃和含氧(氮)化合物上升幅度较大;成都市城区O3超标天对应的臭氧处于显著VOCs控制区,芳香烃和烯烃对O3生成最为敏感,且存在削减NOx的不利效应;结合VOCs来源解析,城区VOCs主要来源:移动源(22.4%)、餐饮及生物质燃烧源(21.8%)、工业源(15.1%)和溶剂使用源(9.3%),臭氧超标天溶剂使用源、餐饮及生物质类燃烧源贡献率明显上升.成都市城区春季应以VOCs减排为重点,并加大芳香烃和烯烃相关源控制力度.  相似文献   
4.
采用大气挥发性有机物(VOCs)在线监测系统对成都市冬季重污染过程的VOCs进行了连续在线观测,用正交矩阵因子分解(PMF)模型开展了VOCs源解析工作,并对重污染成因进行了分析。结果表明:观测期间成都市总VOCs(TVOCs)体积分数为21.83×10~(-9)~183.59×10~(-9),平均值为54.17×10~(-9),TVOCs中烷烃浓度最高,其次为炔烃、烯烃、芳香烃和卤代烃;成都市主要VOCs污染源为机动车排放源、液化石油气燃烧排放源、工业源、生物质燃烧源和溶剂使用源,贡献率分别为34.15%、21.57%、19.08%、15.19%、10.02%;边界层压缩和静风条件可能是导致VOCs和PM2.5浓度增加的主要原因。  相似文献   
5.
VOCs排放来源较多且成分复杂,通过某些特征物种的浓度比值可以获得相应的VOCs来源信息,2018年12月至2019年11月使用TH-300B大气挥发性有机物快速在线监测系统在成都市内进行监测,并用比值法对VOCs的示踪物种进行分析,研究表明,在监测时间范围内,乙烷、丙烷、正戊烷、异戊烷、异戊二烯、乙炔、苯、甲苯、乙苯、间(对)二甲苯的平均浓度分别为5.49ppb、3.60ppb、0.54ppb、1.14ppb、0.1ppb、3.87ppb、0.53ppb、0.87ppb、0.25ppb和0.87ppb;甲苯/苯和异戊烷/正戊烷的比值分别为1.17和1.67,表明市区VOCs的排放受机动车尾气影响较为显著,需继续加强机动车的管控;对二甲苯/乙苯和苯/甲苯的比值分别为3.7和0.85,市区气团有一定老化,春季和冬季气团老化程度较大,光化学年龄较长。  相似文献   
6.
基于光温控模型,利用四川地区植被分布数据、WRF模拟-美国国家环境预报中心(NCEP)再分析气象数据、统计年鉴和文献等资料计算了2012年四川盆地区域9km×9km网格的天然源挥发性有机物(BVOCs)排放清单。结果显示,研究区域BVOCs的排放总量为7.56×10~5 t,其中异戊二烯、单萜烯和其他BVOCs排放量依次为4.08×10~5、1.85×10~5、1.63×10~5 t。绵阳和广元的BVOCs排放量明显高于其他地区(主要体现在异戊二烯的排放上),雅安、达州、巴中以及乐山排放量在2×10~4 t以上,成都、泸州、宜宾、南充以及德阳排放量在1×10~4 t以上,其余城市为1×10~4 t以下。BVOCs排放呈现出明显的空间分布特征,四川盆地四周植被茂盛的区域排放强度较高,部分网格排放强度大于10t/km~2。  相似文献   
7.
近年来成都市臭氧(O3)污染频发,O3污染问题日益突出。采用零维大气盒子(F0AM)模型结合经验动力学模拟方法(EKMA)和相对增量反应活性(RIR)法对成都市2019年8月典型污染时段O3生成进行模拟,并研究成都市O3生成敏感性,由此进一步分析O3污染控制策略。结果表明,模拟日内O3光化学反应过程中,芳香烃减少的比例最大(81.36%),其次为烯烃和炔烃,3者对于O3光化学反应过程有重要作用;EKMA曲线显示成都市城区O3生成处于挥发性有机物(VOCs)控制区;RIR结果显示,人为源VOCs(AVOCs)对成都市城区O3生成最为敏感,其次是植物源VOCs(BVOCs)和CO,而氮氧化物(NOx)为负敏感性,在AVOCs中,芳香烃和烯烃对成都市城区O3生成最为敏感,应加强芳香烃和烯烃相关排放源的管控;以O3日最大小时浓度达到《...  相似文献   
8.
选取涵盖钢铁炼制全流程的典型企业,综合采用不同核算方法估算比较了该企业挥发性有机物(VOCs)排放结果;并在此基础之上,通过氟聚化合物气袋、SUMMA罐采样及气相色谱质谱联用仪(GC-FID/MS)分析方法,对烧结、焦化、热轧和冷轧等工序废气中VOCs浓度水平及排放特征进行监测.结果表明,整个厂区VOCs年排放量为430.82t,其中工艺有组织排放占66.0%,储罐18.5%;烧结机头和焦炉推焦排放口VOCs及非甲烷总烃(NMHC)浓度高于其他点位;各工序排放的芳香烃占比较高,其中焦化装煤除尘和焦炉推焦排放口芳香烃占90%以上;烧结工序CS2占比最高(36.6%),其次为苯和甲苯;焦化工序占比靠前的物种为1,2,4-三甲基苯、邻甲乙苯、1,4-二乙基苯、1,2,3-三甲基苯和1,3,5-三甲基苯等;热轧工序与其他工序有一定区别,车间无组织排放芳香烃和烷烃占比均在35%左右,排放靠前的物种除芳香烃外还有高碳烷烃,如十一烷、十二烷和正丁烷等;冷轧工序有组织和无组织排放主要物种较为类似,均为芳香烃物种,如乙基苯、间/对二甲苯、甲苯、苯和邻二甲苯.不同工艺环节排放物种存在一定差异,但主要以焦化副产物(芳香烃)和烧结燃烧产物(CS2)为主,建议钢铁行业有针对性地加强浓度高、活性高和毒性大的组分控制.  相似文献   
9.
徐晨曦  陈军辉  姜涛  韩丽  王波  李英杰  王成辉  刘政  钱骏 《环境科学》2020,41(12):5316-5324
2019年6~9月在成都市区对挥发性有机物(VOCs)进行在线观测,研究夏季VOCs浓度水平、变化特征、臭氧生成贡献(OFP)及来源贡献.结果表明,成都市区夏季TVOCs(总挥发性有机物)平均质量浓度为112.66 μg·m-3,烷烃(29.51%)和卤代烃(23.23%)为主要组分;VOCs日变化峰值主要出现在上午10:00~11:00,受城市机动车、油气挥发和工业排放影响;夏季VOCs的OFP贡献中芳香烃贡献率(42.7%)最高,其次为烯烃(27.4%),关键活性物种为间/对-二甲苯、乙烯、丙烯、邻-二甲苯、异戊烷、环戊烷和丙烯醛等;使用PMF受体模型进行来源解析表明,移动源为成都市区夏季VOCs的主要贡献源,贡献率为34%,其次为工业源(17%)和油气挥发(14%),溶剂使用源和天然源分别贡献11%和13%.因此,机动车和工业排放为成都市区VOCs的重点控制源,同时溶剂使用及油气挥发等污染源的管控也不可忽视.  相似文献   
10.
连云港发展生态旅游业的探讨   总被引:2,自引:0,他引:2  
在分析生态旅游的涵义、特性和意义的基础上,研究了连云港发展生态旅游业的优势与潜力,提出了促进连云港市生态旅游业发展的几点建议。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号