首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   180篇
  免费   6篇
安全科学   7篇
废物处理   8篇
环保管理   38篇
综合类   18篇
基础理论   44篇
污染及防治   47篇
评价与监测   12篇
社会与环境   10篇
灾害及防治   2篇
  2023年   2篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2018年   5篇
  2017年   3篇
  2016年   6篇
  2015年   7篇
  2014年   5篇
  2013年   23篇
  2012年   8篇
  2011年   7篇
  2010年   3篇
  2009年   6篇
  2008年   11篇
  2007年   7篇
  2006年   12篇
  2005年   10篇
  2004年   4篇
  2003年   6篇
  2002年   7篇
  2001年   3篇
  2000年   3篇
  1999年   1篇
  1998年   2篇
  1996年   1篇
  1995年   6篇
  1994年   1篇
  1993年   3篇
  1992年   4篇
  1990年   3篇
  1989年   1篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1982年   3篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
  1971年   1篇
  1970年   1篇
排序方式: 共有186条查询结果,搜索用时 15 毫秒
1.
2.
Water resources are increasingly impacted by growing human populations, land use, and climate changes, and complex interactions among biophysical processes. In an effort to better understand these factors in semiarid northern Utah, United States, we created a real‐time observatory consisting of sensors deployed at aquatic and terrestrial stations to monitor water quality, water inputs, and outputs along mountain to urban gradients. The Gradients Along Mountain to Urban Transitions (GAMUT) monitoring network spans three watersheds with similar climates and streams fed by mountain winter‐derived precipitation, but that differ in urbanization level, land use, and biophysical characteristics. The aquatic monitoring stations in the GAMUT network include sensors to measure chemical (dissolved oxygen, specific conductance, pH, nitrate, and dissolved organic matter), physical (stage, temperature, and turbidity), and biological components (chlorophyll‐a and phycocyanin). We present the logistics of designing, implementing, and maintaining the network; quality assurance and control of numerous, large datasets; and data acquisition, dissemination, and visualization. Data from GAMUT reveal spatial differences in water quality due to urbanization and built infrastructure; capture rapid temporal changes in water quality due to anthropogenic activity; and identify changes in biological structure, each of which are demonstrated via case study datasets.  相似文献   
3.
Continuous data of vertical-profile salinity were analyzed for four stations located successively upriver in a macrotidal estuary, the lower St. Johns River (Northeast Florida, USA). The data analysis confirmed well-mixed salinity conditions in the river with at most 1.3 ppt of vertical variability at Dames Point (river km 20), where the main variations of salinity are along the longitudinal axis of the river. Given the well-mixed salinity conditions and dominant horizontal structure of salinity variations in the river, we present and apply a barotropic, two-dimensional modeling approach for hydrodynamic-salinity transport simulation in the lower St. Johns River. When properly forced by offshore surge, high-resolution wind fields and freshwater river inflows, the model replicated the salinity measurements remarkably well, including the separation into tidal and sub-tidal components. The data and model results show that, at times, offshore winds and surge can be more influential on longitudinal salinity variations than local winds over the river. We demonstrate the importance of using proper boundary conditions to force the model relative to the minimal sensitivity of the model to parameter adjustment of horizontal mixing and uncertainty-based perturbation of wind and inflow forcings.  相似文献   
4.
This investigation was conducted to evaluate experimental determination of specific gravity (Gs) of municipal solid waste (MSW). Water pycnometry, typically used for testing soils was adapted for testing MSW using a large flask with 2000 mL capacity and specimens with 100–350 g masses. Tests were conducted on manufactured waste samples prepared using US waste constituent components; fresh wastes obtained prior and subsequent to compaction at an MSW landfill; and wastes obtained from various depths at the same landfill. Factors that influence specific gravity were investigated including waste particle size, compaction, and combined decomposition and stress history. The measured average specific gravities were 1.377 and 1.530 for as-prepared/uncompacted and compacted manufactured wastes, respectively; 1.072 and 1.258 for uncompacted and compacted fresh wastes, respectively; and 2.201 for old wastes. The average organic content and degree of decomposition were 77.2% and 0%, respectively for fresh wastes and 22.8% and 88.3%, respectively for old wastes. The Gs increased with decreasing particle size, compaction, and increasing waste age. For fresh wastes, reductions in particle size and compaction caused occluded intraparticle pores to be exposed and waste particles to be deformed resulting in increases in specific gravity. For old wastes, the high Gs resulted from loss of biodegradable components that have low Gs as well as potential access to previously occluded pores and deformation of particles due to both degradation processes and applied mechanical stresses. The Gs was correlated to the degree of decomposition with a linear relationship. Unlike soils, the Gs for MSW was not unique, but varied in a landfill environment due both to physical/mechanical processes and biochemical processes. Specific gravity testing is recommended to be conducted not only using representative waste composition, but also using representative compaction, stress, and degradation states.  相似文献   
5.
Individuals make decisions every day in group contexts which vary in size, structure, and purpose. The US Department of Defense (DoD) is a large organization composed of many groups, and like many organizations, it has a vested interest in improving the performance of its affiliated groups, especially as it concerns risk-informed decision-making. This article discusses current foibles and considerations for decision-making in DoD groups as identified through a workshop with experts in risk-informed decision-making, cognitive science, and military operations. Experts noted that terms associated with risk-informed decision-making were often misconstrued, that formal decision-making frameworks are underutilized, and that many considerations should be taken into account when attempting to improve decision-making performance.  相似文献   
6.
PROBLEM: Safety-belt use reduces motor vehicle crash-related morbidity and mortality, yet an estimated 18% of drivers do not consistently buckle up (NHTSA, 2005). In 1985, Geller and colleagues developed an interpersonal Flash-for-Life prompt that increased belt use among 22% of 1,087 unbuckled drivers (Geller, Bruff, & Nimmer, 1985). METHOD: The Flash-for-Life intervention was re-introduced at a large university with high safety-belt use (i.e., 80%). College students stood at parking-lot entrance/exits and "flashed" signs with the message, "Please Buckle Up, I Care" to unbuckled drivers. RESULTS: Of 427 unbuckled drivers observed, 30% of these complied with the prompt. Male drivers were significantly more likely to comply with prompts delivered by females. DISCUSSION: Compliance was higher than in the 1985 study, indicating a high baseline rate of safety-belt use does not negate potential beneficial influence of a prompting intervention. This intervention is particularly effective with college-aged males, a sub-group of the driving population least likely to buckle-up. IMPACT ON INDUSTRY: A simple behavioral prompt could be used at most industrial complexes to increase safety-belt use among vehicle occupants who are not buckled-up.  相似文献   
7.
The photoenhanced uptake of nitrogen dioxide (NO2) to the surface of commercially available self-cleaning window glass has been studied under controlled laboratory conditions. This material is one of an array of modern building products which incorporate titanium dioxide (TiO2) nanoparticles and are finding increasing use in populated urban areas. Amongst the principal drivers for the use of these materials is that they are thought to facilitate the irreversible removal of pollutants such as NO2 and organic molecules from the atmosphere and thus act to remediate air quality. While it appears that TiO2 materials do indeed remove organic molecules from built environments, in this study we show that the photoenhanced uptake of NO2 to one example material, self-cleaning window glass, is in fact accompanied by the substantial formation (50–70%) of gaseous nitrous acid (HONO). This finding has direct and serious implications for the use of these materials in urban areas. Not only is HONO a harmful respiratory irritant, it is also readily photolysed by solar radiation leading to the formation of hydroxyl radicals (OH) together with the re-release of NOx as NO. The net effect of subsequent OH initiated chemistry can then be the further degradation of air quality through the formation of secondary pollutants such as ozone and VOC oxidation products. In summary, we suggest that a scientifically conceived technical strategy for air quality remediation based on this technology, while widely perceived as universally beneficial, could in fact have effects precisely opposite to those intended.  相似文献   
8.
ABSTRACT

During recent years, greater emphasis has been placed on the control of particulate emissions from painting operations. This has gained more importance as more is learned about the potential release of toxic metals to the atmosphere from painting operations. This has led to queries about the efficiency of various painting arrestor systems to reduce particulate discharges to the atmosphere. Even more important is the capability of the arrestor systems to control PM10 emissions.

In 1995, the U.S. Environmental Protection Agency initiated a study to evaluate various dry paint overspray arrestor systems. This study was designed to evaluate not only the total emissions control capability of the arrestor but also the PM10 control capability of the various system designs. Paint overspray arrestor systems using five different filtration concepts or materials were selected. They include systems constructed of fiberglass, paper, Styrofoam, and cardboard materials. These systems used filtration techniques incorporating the following filtration phenomena and designs: cyclone, baffle, bag systems, and mesh systems.

The testing used an optical particle counting procedure to determine the concentration of particles of a given size fraction to penetrate a test arrestor system. The results of the testing indicated that there are significant differences in the efficiency of the tested system designs to capture and retain PM10.

This paper summarizes the results of the research conducted to determine the capability of the arrestor systems to capture particulate of sizes down to approximately 1 μm in surface diameter.  相似文献   
9.
Point Sampling Digital Imagery with ‘Samplepoint’   总被引:1,自引:0,他引:1  
Measuring percent occurrence of objects from digital images can save time and expense relative to conventional field measurements. However, the accuracy of image analysis had, until now, not reached the level of the best conventional field measurements. Additionally, most image-analysis software programs require advanced user training to successfully analyze images. Here we present a new software program, ‘SamplePoint,’ that provides the user a single-pixel sample point and the ability to view and identify the pixel context. We found SamplePoint to allow accuracy comparable with the most accurate field-methods for ground-cover measurements. Expert use of the program requires minimal training and its ease of use allows rapid measurements from image data. We recommend SamplePoint for calibrating the threshold-detection level of image-analysis software or for making direct measurements of percent occurrence from digital images.  相似文献   
10.
Phosphorus transfer in runoff from intensive pasture systems has been extensively researched at a range of scales. However, integration of data from the range of scales has been limited. This paper presents a conceptual model of P transfer that incorporates landscape effects and reviews the research relating to P transfer at a range of scales in light of this model. The contribution of inorganic P sources to P transfer is relatively well understood, but the contribution of organic P to P transfer is still relatively poorly defined. Phosphorus transfer has been studied at laboratory, profile, plot, field, and watershed scales. The majority of research investigating the processes of P transfer (as distinct from merely quantifying P transfer) has been undertaken at the plot scale. However, there is a growing need to integrate data gathered at a range of scales so that more effective strategies to reduce P transfer can be identified. This has been hindered by the lack of a clear conceptual framework to describe differences in the processes of P transfer at the various scales. The interaction of hydrological (transport) factors with P source factors, and their relationship to scale, require further examination. Runoff-generating areas are highly variable, both temporally and spatially. Improvement in the understanding and identification of these areas will contribute to increased effectiveness of strategies aimed at reducing P transfers in runoff. A thorough consideration of scale effects using the conceptual model of P transfer outlined in this paper will facilitate the development of improved strategies for reducing P losses in runoff.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号