首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   0篇
环保管理   16篇
基础理论   9篇
污染及防治   1篇
  2016年   1篇
  2014年   2篇
  2011年   5篇
  2010年   2篇
  2008年   3篇
  2007年   1篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  2001年   2篇
  1997年   1篇
排序方式: 共有26条查询结果,搜索用时 15 毫秒
1.
Although wetlands are known to be sinks for nitrogen (N) and phosphorus (P), their function in urban watersheds remains unclear. We analyzed water and nitrate (NO3?) and phosphate (PO43?) dynamics during precipitation events in two oxbow wetlands that were created during geomorphic stream restoration in Baltimore County, Maryland that varied in the nature and extent of connectivity to the adjacent stream. Oxbow 1 (Ox1) received 1.6‐4.2% and Oxbow 2 (Ox2) received 4.2‐7.4% of cumulative streamflow during storm events from subsurface seepage (Ox1) and surface flow (Ox2). The retention time of incoming stormwater ranged from 0.2 to 6.7 days in Ox1 and 1.8 to 4.3 days in Ox2. Retention rates in the wetlands ranged from 0.25 to 2.74 g N/m2/day in Ox1 and 0.29 to 1.94 g N/m2/day in Ox2. Percent retention of the NO3?‐N load that entered the wetlands during the storm events ranged from 64 to 87% and 23 to 26%, in Ox1 and Ox2, respectively. During all four storm events, Ox1 and Ox2 were a small net source of dissolved PO43? to the adjacent stream (i.e., more P exited than entered the wetland), releasing P at a rate of 0.23‐20.83 mg P/m2/day and 3.43‐24.84 mg P/m2/day, respectively. N and P removal efficiency of the oxbows were regulated by hydrologic connectivity, hydraulic loading, and retention time. Incidental oxbow wetlands have potential to receive urban stream and storm flow and to be significant N sinks, but they may be sources of P in urban watersheds.  相似文献   
2.
Nitrogen retention in urban lawns and forests   总被引:5,自引:0,他引:5  
Lawns are a dominant cover type in urban ecosystems, and there is concern about their impacts on water quality. However, recent watershed-level studies suggest that these pervious areas might be net sinks, rather than sources, for nitrogen (N) in the urban environment. A 15N pulse-labeling experiment was performed on lawn and forest plots in the Baltimore (Maryland, U.S.A.) metropolitan area to test the hypothesis that lawns are a net sink for atmospheric-N deposition and to compare and contrast mechanisms of N retention in these vegetation types. A pulse of 15N-NO3-, simulating a precipitation event, was followed through mineral soils, roots, Oi-layer/thatch, aboveground biomass, microbial biomass, inorganic N, and evolved N2 gas over a one-year period. The 15N label was undetectable in gaseous samples, but enrichment of other pools was high. Gross rates of production and consumption of NO3- and NH4+ were measured to assess differences in internal N cycling under lawns and forests. Rates of N retention were similar during the first five days of the experiment, with lawns showing higher N retention than forests after 10, 70, and 365 days. Lawns had larger pools of available NO3- and NH4+; however, gross rates of mineralization and nitrification were also higher, leading to no net differences in NO3- and NH4+ turnover times between the two systems. Levels of 15N remained steady in forest mineral soils from day 70 to 365 (at 23% of applied 15N), but continued to accumulate in lawn mineral soils over this same time period, increasing from 20% to 33% of applied 15N. The dominant sink for N in lawn plots changed over time. Immobilization in mineral soils dominated immediately (one day) after tracer application (42% of recovered 15N); plant biomass dominated the short term (10 days; 51%); thatch and mineral-soil pools together dominated the medium term (70 days; 28% and 36%, respectively); and the mineral-soil pool alone dominated long-term retention (one year; 70% of recovered 15N). These findings illustrate the mechanisms whereby urban and suburban lawns under low to moderate management intensities are an important sink for atmospheric-N deposition.  相似文献   
3.
Denitrification potential in urban riparian zones   总被引:3,自引:0,他引:3  
Denitrification, the anaerobic microbial conversion of nitrate (NO3-) to nitrogen (N) gases, is an important process contributing to the ability of riparian zones to function as "sinks" for NO3- in watersheds. There has been little analysis of riparian zones in urban watersheds despite concerns about high NO3- concentrations in many urban streams. Vegetation and soils in urban ecosystems are often highly disturbed, and few studies have examined microbial processes like denitrification in these ecosystems. In this study, we measured denitrification potential and a suite of related microbial parameters (microbial biomass carbon [C] and N content, potential net N mineralization and nitrification, soil inorganic N pools) in four rural and four urban riparian zones in the Baltimore, MD metropolitan area. Two of the riparian zones were forested and two had herbaceous vegetation in each land use context. There were few differences between urban and rural and herbaceous and forest riparian zones, but variability was much higher in urban than rural sites. There were strong positive relationships between soil moisture and organic matter content and denitrification potential. Given the importance of surface runoff in urban watersheds, the high denitrification potential of the surface soils that we observed suggests that if surface runoff can be channeled through areas with high denitrification potential (e.g., stormwater detention basins with wetland vegetation), these areas could function as important NO3- sinks in urban watersheds.  相似文献   
4.
The ground water denitrification capacity of riparian zones in deep soils, where substantial ground water can flow through low-gradient stratified sediments, may affect watershed nitrogen export. We hypothesized that the vertical pattern of ground water denitrification in riparian hydric soils varies with geomorphic setting and follows expected subsurface carbon distribution (i.e., abrupt decline with depth in glacial outwash vs. negligible decline with depth in alluvium). We measured in situ ground water denitrification rates at three depths (65, 150, and 300 cm) within hydric soils at four riparian sites (two per setting) using a 15N-enriched nitrate "push-pull" method. No significant difference was found in the pattern and magnitude of denitrification when grouping sites by setting. At three sites there was no significant difference in denitrification among depths. Correlations of site characteristics with denitrification varied with depth. At 65 cm, ground water denitrification correlated with variables associated with the surface ecosystem (temperature, dissolved organic carbon). At deeper depths, rates were significantly higher closer to the stream where the subsoil often contains organically enriched deposits that indicate fluvial geomorphic processes. Mean rates ranged from 30 to 120 microg N kg(-1) d(-1) within 10 m versus <1 to 40 microg N kg(-1) d(-1) at >30 m from the stream. High denitrification rates observed in hydric soils, down to 3 m within 10 m of the stream in both alluvial and glacial outwash settings, argue for the importance of both settings in evaluating the significance of riparian wetlands in catchment-scale N dynamics.  相似文献   
5.
The capacity of riparian zones to serve as critical control locations for watershed nitrogen flux varies with site characteristics. Without a means to stratify riparian zones into different levels of ground water nitrate removal capacity, this variability will confound spatially explicit source-sink models of watershed nitrate flux and limit efforts to target riparian restoration and management. We examined the capability of SSURGO (1:15 840 Soil Survey Geographic database) map classifications (slope class, geomorphology, and/or hydric soil designation) to identify riparian sites with high capacity for ground water nitrate removal. The study focused on 100 randomly selected riparian locations in a variety of forested and glaciated settings within Rhode Island. Geomorphic settings included till, outwash, and organic/alluvial deposits. We defined riparian zones with "high ground water nitrate removal capacity" as field sites possessing both >10 m of hydric soil width and an absence of ground water surface seeps. SSURGO classification based on a combination of geomorphology and hydric soil status created two functionally distinct sets of riparian sites. More than 75% of riparian sites classified by SSURGO as organic/alluviumhydric or as outwash-hydric had field attributes that suggest a high capacity for ground water nitrate removal. In contrast, >85% of all till sites and nonhydric outwash sites had field characteristics that minimize the capacity for ground water nitrate removal. Comparing the STATSGO and SSURGO databases for a 64000-ha watershed, STATSGO grossly under-represented critical riparian features. We conclude that the SSURGO database can provide modelers and managers with important insights into riparian zone nitrogen removal potential.  相似文献   
6.
Soil carbon pools and fluxes in urban ecosystems   总被引:2,自引:0,他引:2  
The transformation of landscapes from non-urban to urban land use has the potential to greatly modify soil carbon (C) pools and fluxes. For urban ecosystems, very little data exists to assess whether urbanization leads to an increase or decrease in soil C pools. We analyzed three data sets to assess the potential for urbanization to affect soil organic C. These included surface (0-10 cm) soil C data from unmanaged forests along an urban-rural gradient, data from "made" soils (1 m depth) from five different cities, and surface (0-15 cm) soil data of several land-use types in the city of Baltimore. Along the urban-rural land-use gradient, we found that soil organic matter concentration in the surface 10 cm varied significantly (P=0.001). In an analysis of variance, the urban forest stands had significantly (P=0.02) higher organic C densities (kg m(-2) to 1 m depth) than the suburban and rural stands. Our analysis of pedon data from five cities showed that the highest soil organic C densities occurred in loamy fill (28.5 kg m(-2)) with the lowest occurring in clean fill and old dredge materials (1.4 and 6.9 kg m(-2), respectively). Soil organic C densities for residential areas (15.5 +/- 1.2 kg m(-2)) were consistent across cities. A comparison of land-use types showed that low density residential and institutional land-uses had 44 and 38% higher organic C densities than the commercial land-use type, respectively. Our analysis shows that as adjacent land-use becomes more urbanized, forest soil C pools can be affected even in stands not directly disturbed by urban land development. Data from several "made" soils suggests that physical disturbances and inputs of various materials by humans can greatly alter the amount C stored in these soils.  相似文献   
7.
Recent studies have reported that earthworm invasions alter native communities and impact nutrient cycling in terrestrial ecosystems. We developed a simulation model to evaluate the potential impacts of earthworm invasions on carbon dynamics, taking into consideration earthworm feeding strategies and priming effects on the microorganisms through their casting activities. Responses of carbon stocks (forest litter, soil organic matter, microbial biomass and earthworm populations) and carbon fluxes (litter decomposition, earthworm consumption, and microbial respiration) were used to evaluate an earthworm invasion of a forest ecosystem. Data from a northern temperate forest (Arnot Forest, New York) were adapted for model calibration and evaluation. Simulation results suggest that the impact and outcome of earthworm invasions are affected by pre-invasion resource availability (litter and soil organic matter), invasive earthworm assemblages (particularly feeding strategy), and invasion history (associated with earthworm population dynamics). The abovementioned factors may also determine invasion progress of earthworm species. The accuracy of the model could be improved by the addition of environmental modules (e.g., soil water regimes), precise parameters accounting for individual species attributes under different environmental conditions (e.g. utilization ability of different types of food resources), as well as earthworm population dynamics (size and structure) and interactions with predators and other invasive/indigenous species during the invasion progress. Such an earthworm invasion model could provide valuable evaluation of the complicated responses of carbon dynamics to earthworm invasions in a range of forest ecosystems, particularly under global change scenarios.  相似文献   
8.
Abstract: Ground‐water flow paths constrain the extent of nitrogen (N) sinks in deep, stratified soils of riparian wetlands. We examined ground‐water flow paths at four forested riparian wetlands in deep, low gradient, stratified deposits subjected to Southern New England’s temperate, humid climate. Mid‐day piezometric heads were recorded during the high water table period in April/May and again in late November at one site. Coupling field data with a two‐dimensional steady‐state ground‐water flow model, flow paths and fluxes were derived to 3 m depths. April/May evapotranspiration (ET) dominated total outflux (44‐100%) while flux to the stream was <10% of total outflux. ET exerted upward ground‐water flux through shallow carbon‐rich soils, increasing opportunities for N transformations and diverting flow from the stream. Dormant season results showed a marked increase in flux to the stream (27% of the total flux). Riparian sites with deep water tables (naturally or because of increased urbanization or other hydrologic modifications) or shallow root zones may not generate ground‐water upwelling to meet evaporative demand, thereby increasing the risk of N movement to streams. As water managers balance issues of water quality with water quantity, they will be faced with decisions regarding riparian management. Further work towards refining our understanding of ET mediation of N and water flux at the catchment scale will serve to inform these decisions.  相似文献   
9.
The capacity of riparian soils to remove nitrate (NO3) from ground water is well established, but the effects of ground water NO3(-)-enrichment on C dynamics are not well studied. We incubated horizontal cores of aquifer material extracted from beneath moderately well-drained (MWD) and poorly drained (PD) soils in a riparian forest in Rhode Island, USA for 132 d, and dosed (flow rate, 170 mL d(-1); dissolved O2, 2 in PD and 5 mg L(-1) in MWD cores) with ground water amended with either Br-, Br(-)+ NO3- (10 mg N L(-1)), or Br(-) + NO3(-) + DOC (20 mg C L(-1)). The DOC was extracted from forest floor material and added during the first 56 d of the experiment. Addition of NO3- had limited effect on CO2 production while DOC amendment had a significant effect in the PD but not in the MWD mesocosms. Total CO2 production (mg CO2-C kg(-1) soil) was 6.3, 7.0, and 10.1 in the PD and 3.6, 4.0, and 4.5 in the MWD cores amended with Br-, Br(-) + NO3-, and Br(-) + NO3(-) + DOC, respectively. Carbon balance (C(bal) = DOC(in) - (DOC(out) + CO2-C) showed a net C retention of 8.0 mg C kg(-1) soil in the DOC-amended MWD cores (equivalent to 50% of the DOC added), and a net C loss of 8.3 mg C kg(-1) soil in similarly treated PD cores. The lack of C retention in the PD cores was ascribed to reductive dissolution of minerals implicated in DOC sorption. These findings underscore that there is marked variation in C dynamics in riparian aquifers that has the potential to influence the fate of NO3- and DOC in the landscape.  相似文献   
10.
Coastal salt marshes are a buffer between the uplands and adjacent coastal waters in New England (USA). With increasing N loads from developed watersheds, salt marshes could play an important role in the water quality maintenance of coastal waters. In this study we examined seasonal relationships between denitrification enzyme activity (DEA) in salt marshes of Narragansett Bay, Rhode Island, and watershed N loadings, land use, and terrestrial hydric soils. In a manipulative experiment, the effect of nutrient enrichment on DEA was examined in a saltmeadow cordgrass [Spartina patens (Aiton) Muhl.] marsh. In the high marsh, DEA significantly (p < 0.05) increased with watershed N loadings and decreased with the percent of hydric soils in a 200-m terrestrial buffer. In the low marsh, we found no significant relationships between DEA and watershed N loadings, residential land development, or terrestrial hydric soils. In the manipulation experiment, we measured increased DEA in N-amended treatments, but no effect in the P-amended treatments. The positive relationships between N loading and high marsh DEA support the hypothesis that salt marshes may be important buffers between the terrestrial landscape and estuaries, preventing the movement of land-derived N into coastal waters. The negative relationships between marsh DEA and the percent of hydric soils in the adjacent watershed illustrate the importance of natural buffers within the terrestrial landscape. Denitrification enzyme activity appears to be a useful index for comparing relative N exposure and the potential denitrification activity of coastal salt marshes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号