首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   152篇
  免费   6篇
安全科学   7篇
废物处理   5篇
环保管理   28篇
综合类   7篇
基础理论   38篇
环境理论   1篇
污染及防治   46篇
评价与监测   6篇
社会与环境   14篇
灾害及防治   6篇
  2023年   1篇
  2022年   5篇
  2021年   6篇
  2020年   2篇
  2019年   2篇
  2018年   8篇
  2017年   9篇
  2016年   3篇
  2015年   6篇
  2014年   6篇
  2013年   15篇
  2012年   5篇
  2011年   11篇
  2010年   6篇
  2009年   9篇
  2008年   6篇
  2007年   7篇
  2006年   4篇
  2005年   7篇
  2004年   4篇
  2003年   3篇
  2002年   5篇
  2001年   7篇
  2000年   4篇
  1999年   4篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1984年   2篇
  1968年   1篇
  1966年   1篇
排序方式: 共有158条查询结果,搜索用时 15 毫秒
1.
Understanding human behavior is vital to developing interventions that effectively lead to proenvironmental behavior change, whether the focus is at the individual or societal level. However, interventions in many fields have historically lacked robust forms of evaluation, which makes it hard to be confident that these conservation interventions have successfully helped protect the environment. We conducted a systematic review to assess how effective nonpecuniary and nonregulatory interventions have been in changing environmental behavior. We applied the Office of Health Assessment and Translation systematic review methodology. We started with more than 300,000 papers and reports returned by our search terms and after critical appraisal of quality identified 128 individual studies that merited inclusion in the review. We classified interventions by thematic area, type of intervention, the number of times audiences were exposed to interventions, and the length of time interventions ran. Most studies reported a positive effect (n = 96). The next most common outcome was no effect (n = 28). Few studies reported negative (n = 1) or mixed (n = 3) effects. Education, prompts, and feedback interventions resulted in positive behavior change. Combining multiple interventions was the most effective. Neither exposure duration nor frequency affected the likelihood of desired behavioral change. Comparatively few studies tested the effects of voluntary interventions on non-Western populations (n = 17) or measured actual ecological outcome behavior (n = 1). Similarly, few studies examined conservation devices (e.g., energy-efficient stoves) (n = 9) and demonstrations (e.g., modeling the desired behavior) (n = 5). There is a clear need to both improve the quality of the impact evaluation conducted and the reporting standards for intervention results.  相似文献   
2.
International Union for Conservation of Nature (IUCN) Red List assessments rely on published data and expert inputs, and biases can be introduced where underlying definitions and concepts are ambiguous. Consideration of climate change threat is no exception, and recently numerous approaches to assessing the threat of climate change to species have been developed. We explored IUCN Red List assessments of amphibians and birds to determine whether species listed as threatened by climate change display distinct patterns in terms of habitat occupied and additional nonclimatic threats faced. We compared IUCN Red List data with a published data set of species’ biological and ecological traits believed to infer high vulnerability to climate change and determined whether distributions of climate change‐threatened species on the IUCN Red List concur with those of climate change‐threatened species identified with the trait‐based approach and whether species possessing these traits are more likely to have climate change listed as a threat on the IUCN Red List. Species in some ecosystems (e.g., grassland, shrubland) and subject to particular threats (e.g., invasive species) were more likely to have climate change as a listed threat. Geographical patterns of climate change‐threatened amphibians and birds on the IUCN Red List were incongruent with patterns of global species richness and patterns identified using trait‐based approaches. Certain traits were linked to increases or decreases in the likelihood of a species being threatened by climate change. Broad temperature tolerance of a species was consistently related to an increased likelihood of climate change threat, indicating counterintuitive relationships in IUCN assessments. To improve the robustness of species assessments of the vulnerability or extinction risk associated with climate change, we suggest IUCN adopt a more cohesive approach whereby specific traits highlighted by our results are considered in Red List assessments. To achieve this and to strengthen the climate change‐vulnerability assessments approach, it is necessary to identify and implement logical avenues for further research into traits that make species vulnerable to climate change (including population‐level threats).  相似文献   
3.
Species interactions matter to conservation. Setting an ambitious recovery target for a species requires considering the size, density, and demographic structure of its populations such that they fulfill the interactions, roles, and functions of the species in the ecosystems in which they are embedded. A recently proposed framework for an International Union for Conservation of Nature Green List of Species formalizes this requirement by defining a fully recovered species in terms of representation, viability, and functionality. Defining and quantifying ecological function from the viewpoint of species recovery is challenging in concept and application, but also an opportunity to insert ecological theory into conservation practice. We propose 2 complementary approaches to assessing a species’ ecological functions: confirmation (listing interactions of the species, identifying ecological processes and other species involved in these interactions, and quantifying the extent to which the species contributes to the identified ecological process) and elimination (inferring functionality by ruling out symptoms of reduced functionality, analogous to the red-list approach that focuses on symptoms of reduced viability). Despite the challenges, incorporation of functionality into species recovery planning is possible in most cases and it is essential to a conservation vision that goes beyond preventing extinctions and aims to restore a species to levels beyond what is required for its viability. This vision focuses on conservation and recovery at the species level and sees species as embedded in ecosystems, influencing and being influenced by the processes in those ecosystems. Thus, it connects and integrates conservation at the species and ecosystem levels.  相似文献   
4.
Conservation science involves the collection and analysis of data. These scientific practices emerge from values that shape who and what is counted. Currently, conservation data are filtered through a value system that considers native life the only appropriate subject of conservation concern. We examined how trends in species richness, distribution, and threats change when all wildlife count by adding so-called non-native and feral populations to the International Union for Conservation of Nature Red List and local species richness assessments. We focused on vertebrate populations with founding members taken into and out of Australia by humans (i.e., migrants). We identified 87 immigrant and 47 emigrant vertebrate species. Formal conservation accounts underestimated global ranges by an average of 30% for immigrants and 7% for emigrants; immigrations surpassed extinctions in Australia by 52 species; migrants were disproportionately threatened (33% of immigrants and 29% of emigrants were threatened or decreasing in their native ranges); and incorporating migrant populations into risk assessments reduced global threat statuses for 15 of 18 species. Australian policies defined most immigrants as pests (76%), and conservation was the most commonly stated motivation for targeting these species in killing programs (37% of immigrants). Inclusive biodiversity data open space for dialogue on the ethical and empirical assumptions underlying conservation science.  相似文献   
5.
6.
Fungal based biopolymer matrix composites with lignocellulosic agricultural waste as the filler are a viable alternative for some applications of synthetic polymers. This research provides insight into the impact of the processing method and composition of agriwaste/fungal biopolymer composites on structure and mechanical properties. The impact of nutrition during inoculation and after a homogenization step on the three-point bend flexural modulus and strength was determined. Increasing supplemental nutrition at inoculation had little effect on the overall composite strength or modulus; however, increasing carbohydrate loading after a homogenization step increased flexural stress at yield and bulk flexural modulus. The contiguity of the network formed was notably higher in the latter scenario, suggesting that the increase in modulus and strength of the final composite after homogenization was the result of contiguous hyphal network formation, which improves the integrity of the matrix and the ability to transfer load to the filler particles.  相似文献   
7.
In view of past environmental degradation and anticipated climate change impacts, we assessed the potential for ecosystem-based adaptation in the Murray-Darling Basin, Australia. In a workshop with staff from three Catchment Management Authorities (CMAs) who had jurisdiction over three sub-basins, as well as technical experts, nine adaptation options were identified that ranged from environmental flows, restoring river channel habitat, reoperating infrastructure and controlling invasive species. A Catchment Adaptation Framework was developed and used to assess and compare these adaptation options with each of the CMAs, drawing on interviews with their key stakeholders, to identify the risks, benefits and costs. We found that ecosystem-based adaptation can augment catchment management programs and requires investment in a suite of different but complementary measures to lower risk. Our research found institutional challenges in implementing this approach, including the complexities of multi-agency management, constricting legal requirements, narrow funding arrangements, under-developed institutional capacity, difficulties of implementing catchment-scale programs on private property and the need to adhere to community expectations. These institutional issues are ubiquitous internationally and point to the wider issues of providing sufficient management capacity to support adaptation. The Catchment Adaptation Framework presented here enables river basin managers to systematically assess the adaptation options to better inform their decision-making.  相似文献   
8.
Fine particulate matter (\(\hbox {PM}_{2.5}\)) events negatively affect the health of numerous persons globally each year. Previous works have described the association between air pollution and surface-level meteorological conditions; however, there has been less focus on the task of linking air pollution events with meteorological conditions at higher levels of the atmosphere. Working within the functional data framework, we develop a penalized functional quantile regression (PFQR) procedure to model conditional quantiles of a continuous response based on a functional covariate, with the ability to penalize selected derivatives of the estimated coefficient function. Our aim is to investigate the relationship between atmospheric profile variables (APVs), assumed to be functional, and key quantiles of the conditional distribution of surface-level \(\hbox {PM}_{2.5}\). Via a simulation study, we find that the performance of our PFQR procedure compares favorably to other related approaches. We conclude with an analysis of \(\hbox {PM}_{2.5}\) data at two Southeastern US locations, Columbia, SC and Tampa, FL, where we estimate the coefficient functions for the APVs corresponding to both ‘typical’ and ‘high’ \(\hbox {PM}_{2.5}\) events. As we believe that the true coefficient functions are smooth and may be exactly zero over subsets of their domains, we impose penalties on the 0th and 2nd derivatives. Our analysis indicates that the corresponding atmospheric conditions differ between the two locations, and that the conditions differ seasonally within location.  相似文献   
9.
The theory of collective motion and the study of animal social networks have, each individually, received much attention. Currently, most models of collective motion do not consider social network structure. The implications for considering collective motion and social networks together are likely to be important. Social networks could determine how populations move in, split up into and form separate groups (social networks affecting collective motion). Conversely, collective movement could change the structure of social networks by creating social ties that did not exist previously and maintaining existing ties (collective motion affecting social networks). Thus, there is a need to combine the two areas of research and examine the relationship between network structure and collective motion. Here, we review different modelling approaches that combine social network structures and collective motion. Although many of these models have not been developed with ecology in mind, they present a current context in which a biologically relevant theory can be developed. We argue that future models in ecology should take inspiration from empirical observations and consider different mechanisms of how social preferences could be expressed in collectively moving animal groups.  相似文献   
10.
Late Quaternary extinctions and population fragmentations have severely disrupted animal‐plant interactions globally. Detection of disrupted interactions often relies on anachronistic plant characteristics, such as spines in the absence of large herbivores or large fruit without dispersers. However, obvious anachronisms are relatively uncommon, and it can be difficult to prove a direct link between the anachronism and a particular faunal taxon. Analysis of coprolites (fossil feces) provides a novel way of exposing lost interactions between animals (depositors) and consumed organisms. We analyzed ancient DNA to show that a coprolite from the South Island of New Zealand was deposited by the rare and threatened kakapo (Strigops habroptilus), a large, nocturnal, flightless parrot. When we analyzed the pollen and spore content of the coprolite, we found pollen from the cryptic root‐parasite Dactylanthus taylorii. The relatively high abundance (8.9% of total pollen and spores) of this zoophilous pollen type in the coprolite supports the hypothesis of a former direct feeding interaction between kakapo and D. taylorii. The ranges of both species have contracted substantially since human settlement, and their present distributions no longer overlap. Currently, the lesser short‐tailed bat (Mystacina tuberculata) is the only known native pollinator of D. taylorii, but our finding raises the possibility that birds, and other small fauna, could have once fed on and pollinated the plant. If confirmed, through experimental work and observations, this finding may inform conservation of the plant. For example, it may be possible to translocate D. taylorii to predator‐free offshore islands that lack bats but have thriving populations of endemic nectar‐feeding birds. The study of coprolites of rare or extinct taxonomic groups provides a unique way forward to expand existing knowledge of lost plant and animal interactions and to identify pollination and dispersal syndromes. This approach of linking paleobiology with neoecology offers significant untapped potential to help inform conservation and restoration plans. Un Eslabón Perdido entre un Loro No Volador y una Planta Parásita y el Papel Potencial de Coprolitos en Paleobiología de la Conservación  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号