首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
废物处理   1篇
环保管理   6篇
综合类   1篇
  2012年   1篇
  2010年   1篇
  2007年   2篇
  2005年   1篇
  2002年   2篇
  1994年   1篇
排序方式: 共有8条查询结果,搜索用时 21 毫秒
1
1.
ABSTRACT: The last few decades have seen an increased reliance on the use of stream attributes to monitor stream conditions. The use of stream attributes has been criticized because of variation in how observers evaluate them, inconsistent protocol application, lack of consistent training, and the difficulty in using them to detect change caused by management activity. In this paper, we evaluate the effect of environmental heterogeneity and observer variation on the use of physical stream attributes as monitoring tools. For most stream habitat attributes evaluated, difference among streams accounted for greater than 80 percent of the total survey variation. To minimize the effect that variation among streams has on evaluating stream conditions, it may be necessary to design survey protocols and analysis that include stratification, permanent sites, and/or analysis of covariance. Although total variation was primarily due to differences among streams, observers also differed in their evaluation of stream attributes. This study suggests that if trained observers conducting a study that is designed to account for environmental heterogeneity can objectively evaluate defined stream attributes, results should prove valuable in monitoring differences in reach scale stream conditions. The failure to address any of these factors will likely lead to the failure of stream attributes as effective monitoring tools.  相似文献   
2.
Abstract: A method was developed to characterize ecological integrity of riparian sites based on the abundance of hydric species. This wetland index can be calculated with species data, or with community type data as performed here. Classified riparian community types were used to describe vegetation at 14 livestock exclosures and adjacent grazed areas. Community type wetland index values were generated and used to calculate site wetland index values. It was hypothesized that removal of livestock would result in higher wetland index values because of release from herbivory and decreased physical disturbance of vegetation, streambanks, and soil. The wetland index for exclosures was about 12% higher than grazed sites; differences were statistically significant (p < 0.01) based on paired t‐tests. The increase in hydric vegetation after livestock exclusion may have contributed to the greater bank stability (p = 0.002) and smaller width‐to‐depth ratio (p = 0.005) in exclosures. Challenges were encountered in using community types to describe and compare site vegetation, which could be avoided with species data collection. The wetland index can be a tool to monitor sites over time, compare sites with similar environments, or compare sites for which environmental differences can be accounted.  相似文献   
3.
Establishing aquatic restoration priorities using a watershed approach   总被引:11,自引:0,他引:11  
Since the passage of the Clean Water Act in 1972, the United States has made great strides to reduce the threats to its rivers, lakes, and wetlands from pollution. However, despite our obvious successes, nearly half of the nation's surface water resources remain incapable of supporting basic aquatic values or maintaining water quality adequate for recreational swimming. The Clean Water Act established a significant federal presence in water quality regulation by controlling point and non-point sources of pollution. Point-sources of pollution were the major emphasis of the Act, but Section 208 specifically addressed non-point sources of pollution and designated silviculture and livestock grazing as sources of non-point pollution. Non-point source pollutants include runoff from agriculture, municipalities, timber harvesting, mining, and livestock grazing. Non-point source pollution now accounts for more than half of the United States water quality impairments. To successfully improve water quality, restoration practitioners must start with an understanding of what ecosystem processes are operating in the watershed and how they have been affected by outside variables. A watershed-based analysis template developed in the Pacific Northwest can be a valuable aid in developing that level of understanding. The watershed analysis technique identifies four ecosystem scales useful to identify stream restoration priorities: region, basin, watershed, and site. The watershed analysis technique is based on a set of technically rigorous and defensible procedures designed to provide information on what processes are active at the watershed scale, how those processes are distributed in time and space. They help describe what the current upland and riparian conditions of the watershed are and how these conditions in turn influence aquatic habitat and other beneficial uses. The analysis is organized as a set of six steps that direct an interdisciplinary team of specialists to examine the biotic and abiotic processes influencing aquatic habitat and species abundance. This process helps develop an understanding of the watershed within the context of the larger ecosystem. The understanding gained can then be used to identify and prioritize aquatic restoration activities at the appropriate temporal and spatial scale. The watershed approach prevents relying solely on site-level information, a common problem with historic restoration efforts. When the watershed analysis process was used in the Whitefish Mountains of northwest Montana, natural resource professionals were able to determine the dominant habitat forming processes important for native fishes and use that information to prioritize, plan, and implement the appropriate restoration activities at the watershed scale. Despite considerable investments of time and resources needed to complete an analysis at the watershed scale, the results can prevent the misdiagnosis of aquatic problems and help ensure that the objectives of aquatic restoration will be met.  相似文献   
4.
Ecosystem-based Management (EBM) is an approach that includes different management priorities and requires a balance between anthropogenic and ecological resource demands. Indicators can be used to monitor ecosystem status and trends, and assess whether projects and/or programs are leading to the achievement of management goals. As such, the careful selection of a suite of indicators is a crucial exercise. In this paper we describe an indicator evaluation and selection process designed to support the EBM approach in Puget Sound. The first step in this process was the development of a general framework for selecting indicators. The framework, designed to transparently include both scientific and policy considerations into the selection and evaluation process, was developed and then utilized in the organization and determination of a preliminary set of indicators. Next, the indicators were assessed against a set of nineteen distinct criteria that describe the model characteristics of an indicator. A literature review was performed for each indicator to determine the extent to which it satisfied each of the evaluation criteria. The result of each literature review was summarized in a numerical matrix, allowing comparison, and demonstrating the extent of scientific reliability. Finally, an approach for ranking indicators was developed to explore the effects of intended purpose on indicator selection. We identified several sets of scientifically valid and policy-relevant indicators that included metrics such as annual-7 day low flow and water system reliability, which are supportive of the EBM approach in the Puget Sound.  相似文献   
5.
Thermal remediation of contaminated soils and groundwater by injection of hot air and steam using large‐diameter auger in situ soil mixing effectively remediates volatile and semivolatile organic compounds. This technology removes large amounts of contamination during the early treatment stages, but extended treatment times are needed to achieve high removal percentages. Combining thermal treatment with another technology that can be injected and mixed into the soil, and that continues to operate after removal of the drilling equipment, improves removal efficiency, and reduces cost. Using field‐determined pseudo first‐order removal rates, the cost of the combined remediation of chlorinated volatile organic compounds (CVOCs) by thermal treatment followed by reductive dechlorination by iron powder has been estimated as 57 percent of the cost of thermal treatment alone. This analysis was applied to a case‐study remediation of 48,455 cubic yards, which confirmed the cost estimate of the combined approach and showed over 99.8 percent removal of trichloroethene and other chlorinated VOCs. © 2010 Wiley Periodicals, Inc.  相似文献   
6.
Prenatal diagnosis choices were reviewed in 473 women who presented for genetic counselling prior to 11 weeks' gestation for the indication of advanced maternal age. Group A consisted of 336 patients who were unaware of a possible association between chorionic villus sampling (CVS) and limb defects. Group B consisted of 137 patients who were provided this information. Fifty-one per cent of patients in group A and 45 per cent of patients in group B chose CVS. This difference was not significant by χ2 analysis (P = 0·7). Patterns of prenatal diagnosis procedure utilization from 1987 to 1992 revealed a significant reduction in CVS utilization accompanied by a corresponding increase in amniocentesis after the association between CVS and limb defects was publicized. Referrals for CVS counselling also significantly declined. However, acceptance rates did not change for those patients who received genetic counselling. First-trimester genetic counselling, including a discussion regarding a possible association between CVS and limb defects, helps patients make informed decisions concerning prenatal diagnosis options, and, in our population, resulted in no change in CVS acceptance rates.  相似文献   
7.
Pebble counts have been used for a variety of monitoring projects and are an important component of stream evaluation efforts throughout the United States. The utility of pebble counts as a monitoring tool is, however, based on the monitoring objectives and the assumption that data are collected with sufficient precision to meet those objectives. Depending upon the objective, sources of variability that can limit the precision of pebble count data include substrate heterogeneity at a site, differences in substrate among sample locations within a stream reach, substrate variability among streams, differences in when the substrate sample is collected, differences in how and where technicians pick up substrate particles, and how consistently technicians measure the intermediate axis of a selected particle. This study found that each of these sources of variability is of sufficient magnitude to affect results of monitoring projects. Therefore, actions such as observer training, increasing the number of pebbles measured, evaluating several riffles within a reach, evaluating permanent sites, and narrowing the time window during which pebble counts are conducted should be considered in order to minimize variability. The failure to account for sources of variability associated with pebble counts within the study design may result in failing to meet monitoring objectives.  相似文献   
8.
Abstract: Stream monitoring programs commonly measure physical attributes to assess the effect of land management on stream habitat. Variability associated with the measurement of these attributes has been linked to a number of factors, but few studies have evaluated variability due to differences in protocols. We compared six protocols, five used by the U.S. Department of Agriculture Forest Service and one by the U.S. Environmental Protection Agency, on six streams in Oregon and Idaho to determine whether differences in protocol affect values for 10 physical stream attributes. Results from Oregon and Idaho were combined for groups participating in both states, with significant differences in attribute means for 9 out of the 10 stream attributes. Significant differences occurred in 5 of 10 in Idaho, and 10 of 10 in Oregon. Coefficients of variation, signal‐to‐noise ratio, and root mean square error were used to evaluate measurement precision. There were differences among protocols for all attributes when states were analyzed separately and as a combined dataset. Measurement differences were influenced by choice of instruments, measurement method, measurement location, attribute definitions, and training approach. Comparison of data gathered by observers using different protocols will be difficult unless a core set of protocols for commonly measured stream attributes can be standardized among monitoring programs.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号