首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
环保管理   1篇
基础理论   2篇
  2013年   1篇
  2011年   1篇
  2000年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
2.
Abstract: The important role of humans in the development of current ecosystems was recognized decades ago; however, the integration of history and ecology in order to inform conservation has been difficult. We identified four issues that hinder historical ecological research and considered possible solutions. First, differences in concepts and methods between the fields of ecology and history are thought to be large. However, most differences stem from miscommunication between ecologists and historians and are less substantial than is usually assumed. Cooperation can be achieved by focusing on the features ecology and history have in common and through understanding and acceptance of differing points of view. Second, historical ecological research is often hampered by differences in spatial and temporal scales between ecology and history. We argue that historical ecological research can only be conducted at extents for which sources in both disciplines have comparable resolutions. Researchers must begin by clearly defining the relevant scales for the given purpose. Third, periods for which quantitative historical sources are not easily accessible (before AD 1800) have been neglected in historical ecological research. Because data from periods before 1800 are as relevant to the current state of ecosystems as more recent data, we suggest that historical ecologists actively seek out data from before 1800 and apply analytic methods commonly used in ecology to these data. Fourth, humans are not usually considered an intrinsic ecological factor in current ecological research. In our view, human societies should be acknowledged as integral parts of ecosystems and societal processes should be recognized as driving forces of ecosystem change.  相似文献   
3.
Estimation of Nitrous Oxide Emissions from US Grasslands   总被引:2,自引:0,他引:2  
2 O) emissions from temperate grasslands are poorly quantified and may be an important part of the atmospheric N2O budget. In this study N2O emissions were simulated for 1052 grassland sites in the United States using the NGAS model of Parton and others (1996) coupled with an organic matter decomposition model. N2O flux was calculated for each site using soil and land use data obtained from the National Resource Inventory (NRI) database and weather data obtained from NASA. The estimates were regionalized based upon temperature and moisture isotherms. Annual N2O emissions for each region were based on the grassland area of each region and the mean estimated annual N2O flux from NRI grassland sites in the region. The regional fluxes ranged from 0.18 to 1.02 kg N2O N/ha/yr with the mean flux for all regions being 0.28 kg N2O N/ha/yr. Even though fluxes from the western regions were relatively low, these regions made the largest contribution to total emissions due to their large grassland area. Total US grassland N2O emissions were estimated to be about 67 Gg N2O N/yr. Emissions from the Great Plains states, which contain the largest expanse of natural grassland in the United States, were estimated to average 0.24 kg N2O N/ha/yr. Using the annual flux estimate for the temperate Great Plains, we estimate that temperate grasslands worldwide may potentially produce 0.27 Tg N2O N/yr. Even though our estimate for global temperate grassland N2O emissions is less than published estimates for other major temperate and tropical biomes, our results indicate that temperate grasslands are a significant part of both United States and global atmospheric N2O budgets. This study demonstrates the utility of models for regional N2O flux estimation although additional data from carefully designed field studies is needed to further validate model results.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号