首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   2篇
环保管理   5篇
  2018年   1篇
  2017年   1篇
  2009年   1篇
  2005年   2篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
Abstract: A stream mesocosm experiment was conducted to study the ecosystem‐wide effects of two replicated flow hydrograph treatments programmed in an attempt to compare a simulated predevelopment condition to the theoretical changes that new development brings, while accounting for engineering design criteria for urban stormwater management. Accordingly, the treatments (three replicates each) differed in base flow between events and in the rise to, fall from, and duration of peak flow during simulated storm hydrographs, which were triggered by real rain events occurring outside over a 96‐day period from summer to fall, 2005. Incident irradiance, initial substrate quality, and water quality were similar between treatments. Sampling was designed to study the interactions among the treatment flow dynamics, sediment transport processes, streambed nutrients, and biotic structure and function. What appeared most important to the overall structure and function of the mesocosm ecosystems beyond those changes resulting from natural seasonality were (1) the initial mass of fines that infiltrated into the gravel bed, which had a persistent effect on nitrogen biogeochemistry and (2) the subsequent fine sediment accumulation rate, which was unexpectedly similar between treatments, and affected the structure of the macroinvertebrate community equally as the experiment progressed. Invertebrate taxa preferring soft beds dominated when the gravel was comprised of 5‐10% fines. The dominant invertebrate algal grazer had vacated the channels when fines exceeded 15%, but this effect could not be separated from what appeared to be a seasonal decline in insect densities over the course of the study. Neither hydrograph treatment allowed for scour or other potential for flushing of fines. This demonstrated the potential importance of interactions between hydrology and fine sediment loading dynamics on stream ecosystems in the absence of flows that would act to mobilize gravel beds.  相似文献   
2.
Water quality trading (WQT) has the potential to be a low‐cost means for achieving water quality goals. WQT allows regulated wastewater treatment plants (WWTPs) facing discharge limits the flexibility to either reduce their own discharge or purchase pollution control from other WWTPs or nonpoint sources (NPSs) such as agricultural producers. Under this limited scope, programs with NPSs have been largely unsuccessful at meeting water quality goals. The decision to participate in trading depends on many factors including the pollution control costs, uncertainty in pollution control, and discharge limits. Current research that focuses on making WQT work tends to identify how to increase participation by traditional traders such as WWTPs and agricultural producers. As an alternative, but complementary approach, we consider whether augmenting WQT markets with nontraditional participants would help increase the number of trades. Determining the economic incentives for these potential participants requires the development of novel benefit functions requiring not only economic considerations but also accounting for ecological and engineering processes. Existing literature on nontraditional participants in environmental markets tends to center on air quality and only increasing citizen participation as buyers. Here, we consider the issues for broadening participation (both buyers and sellers) in WQT and outline a multidisciplinary approach to begin evaluating feasibility.  相似文献   
3.
Research related to the ecological risk management of sediment stress in watersheds is placed under a common conceptual framework in order to help promote the timely advance of decision support methods for aquatic resource managers and watershed-level planning. The proposed risk management research program relies heavily on model development and verification, and should be applied under an adaptive management approach. The framework is centered on using best management practices (BMPs), including eco-restoration. It is designed to encourage the development of numerical representations of the performance of these management options, the integration of this information into sediment transport simulation models that account for uncertainty in both input and output, and would use strategic environmental monitoring to guide sediment-related risk management decisions for mixed land use watersheds. The goal of this project was to provide a sound scientific framework based on recent state of the practice in sediment-related risk assessment and management for research and regulatory activities. As a result, shortcomings in the extant data and measurement and modeling tools were identified that can help determine future research direction. The compilation of information is beneficial to the coordination of related work being conducted within and across entities responsible for managing watershed-scale risks to aquatic ecosystems.  相似文献   
4.
Spatial data are playing an increasingly important role in watershed science and management. Large investments have been made by government agencies to provide nationally‐available spatial databases; however, their relevance and suitability for local watershed applications is largely unscrutinized. We investigated how goodness of fit and predictive accuracy of total phosphorus (TP) concentration models developed from nationally‐available spatial data could be improved by including local watershed‐specific data in the East Fork of the Little Miami River, Ohio, a 1,290 km2 watershed. We also determined whether a spatial stream network (SSN) modeling approach improved on multiple linear regression (nonspatial) models. Goodness of fit and predictive accuracy were highest for the SSN model that included local covariates, and lowest for the nonspatial model developed from national data. Septic systems and point source TP loads were significant covariates in the local models. These local data not only improved the models but enabled a more explicit interpretation of the processes affecting TP concentrations than more generic national covariates. The results suggest SSN modeling greatly improves prediction and should be applied when using national covariates. Including local covariates further increases the accuracy of TP predictions throughout the studied watershed; such variables should be included in future national databases, particularly the locations of septic systems.  相似文献   
5.
Increased participation in resource management decisions by a wide range of stakeholders has been widely advocated, and has recently been formally incorporated into the European Water Framework Directive. However, achieving such participation has generally proved to be problematical. In response to locally perceived needs, a project was set up in the Ythan catchment in northeast Scotland, to undertake catchment management actions with increased public involvement. This paper outlines the methods used to increase public participation in such actions, and some preliminary assessments of the effectiveness of these. The experience of the project and the lessons learnt, including some of the difficulties of ensuring fully representative stakeholder involvement, are discussed in relation to published criteria for public participation in resource management.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号