首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   141篇
  免费   1篇
  国内免费   1篇
安全科学   6篇
废物处理   4篇
环保管理   33篇
综合类   23篇
基础理论   25篇
污染及防治   27篇
评价与监测   15篇
社会与环境   10篇
  2022年   5篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   5篇
  2016年   7篇
  2015年   2篇
  2014年   7篇
  2013年   12篇
  2012年   8篇
  2011年   4篇
  2010年   4篇
  2009年   12篇
  2008年   8篇
  2007年   9篇
  2006年   6篇
  2005年   4篇
  2004年   6篇
  2003年   5篇
  2002年   3篇
  2000年   1篇
  1999年   2篇
  1998年   3篇
  1997年   1篇
  1995年   1篇
  1994年   3篇
  1993年   3篇
  1992年   3篇
  1989年   1篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1983年   3篇
  1982年   1篇
  1980年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有143条查询结果,搜索用时 15 毫秒
1.
Environmental Science and Pollution Research - Microplastics (MPs) are widely recognised as a contaminant of emerging concern in the marine environment. This work provides original data of the...  相似文献   
2.
3.
Managing wildlife diseases requires an understanding of disease transmission, which may be strongly affected by host population density and landscape features. Transmission models are typically fit from time-series disease prevalence data and modelled based on how the contact rate among hosts is affected by density, which is often assumed to be a linear (density-dependent transmission) or constant (frequency-dependent transmission) relationship. However, long-term time-series data is unavailable for emerging diseases, and this approach cannot account for independent effects of landscape. We developed a mechanistic model based on ecological data to empirically derive the contact rate-density relationship in white-tailed and mule deer in an enzootic region of chronic wasting disease (CWD) in Alberta, Canada and to determine whether it was affected by landscape. Using data collected from aerial surveys and GPS-telemetry, we developed empirical relationships predicting deer group size, home range size, and habitat selection to iteratively simulate deer distributions across a range of densities and landscapes. We calculated a relative measure of total per-capita contact rate, which is proportional to the number of other deer contacted per individual per unit time, for each distribution as the sum of pairwise contact rates between a target deer and all other individuals. Each pairwise contact rate was estimated from an empirical relationship developed from GPS-telemetry data predicting pairwise contact rates as a function of home range overlap and landscape structure. Total per-capita contact rates increased as a saturating function of density, supporting a transmission model intermediate between density- and frequency-dependent transmission. This pattern resulted from group sizes that reached an asymptote with increasing deer density, although this relationship was mediated by tree and shrub coverage in the landscape, such that in heavily wooded areas, the contact rate saturated at much lower densities. These results suggest that CWD management based on herd reductions, which require a density-dependent contact rate to be effective, may have variable effects on disease across a single management region. The novel mechanistic approach we employed for estimating effects of density and landscape on transmission is a powerful complement to typical data-fitting approaches for modelling disease transmission.  相似文献   
4.
In this study we evaluated the effect of different fertilizer treatments on Brassica plants grown on boron-contaminated sediments. Experiments were conducted in the laboratory and on the lysimeter scale. At laboratory scale (microcosm), five different fertilizers were tested for a 35-d period. On the lysimeter scale, nitrogen fertilization was tested at three different doses and plants were allowed to grow until the end of the vegetative phase (70 d). Results showed that nitrogen application had effectively increased plant biomass production, while B uptake was not affected. Total B phytoextracted increased three-fold when the highest nitrogen dose was applied. Phytotoxicity on Brassica was evaluated by biochemical parameters. In plants grown in unfertilized B-contaminated sediments, the activity of antioxidant enzymes superoxide dismutase (SOD), ascorbate peroxidase (APX) and pyrogallol peroxidase (PPX) increased, whereas catalase (CAT) decreased with respect to control plants. Addition of N progressively mitigated the alteration of enzymatic activity, thus suggesting that N can aid in alleviating B-induced oxidative stress. SOD activity was restored to control levels just at the lowest N treatment, whereas the CAT inhibition was partially restored only at the highest one. N application also lowered the B-induced increase in APX and PPX activities. Increased glutathione reductase activity indicated the need to restore the oxidative balance of glutathione. Data also suggest a role of glutathione and phytochelatins in B defense mechanisms. Results suggest that the nitrogen fertilizer was effective in improving B phytoextraction by increasing Brassica biomass and by alleviating B-induced oxidative stress.  相似文献   
5.
Different ways for modeling the impact of vehicle emission inspection and maintenance programs on fleet hydrocarbon emissions are examined. A dynamic model is developed for forecasting fleet emissions in which individual vehicle performance is modeled as a stochastic process and vehicle emissions are tracked over time. Emissions inspection and repair are incorporated into the model, allowing for the stochastic aspects of both testing and repair. This model is compared to EPA’s model for evaluating the impact of vehicle emissions inspection and maintenance. We find that the way vehicle emission equipment deterioration overtime is modeled is important for forecasting emissions from the fleet and for assessing the success of inspection and maintenance programs. For inspection programs, we find that factors such as the proportion of vehicles tested, and repair effectiveness and duration have the greatest impact on emission reductions. The ability of different emission testing regimes to identify polluting vehicles has less impact on a program’s overall potential for emissions reduction. Policy recommendations for I&M testing and predictions of emission reduction credits from these tests will depend in important ways on the methods used in the underlying emissions models.  相似文献   
6.
Air pollution, harvesting practices, and natural disturbances can affect the growth of trees and forest development. To make predictions about anthropogenic impacts on forests, we need to understand how these factors affect tree growth. In this study the effect of disturbance history on tree growth and stand structure was examined by using a computer model of forest development. The model was run under the climatic conditions of east Tennessee, USA, and the results compared to stand structure and tree growth data from a yellow poplar-white oak forest. Basal area growth and forest biomass were more accurately projected when rough approximations of the thinning and fire history typical of the measured plots were included in the simulation model. Stand history can influence tree growth rates and forest structure and should be included in any attempt to assess forest impacts.  相似文献   
7.
8.
9.
The objective of this work was to compare the performance of two laboratory-scale, mesophilic systems aiming at the anaerobic digestion of the organic fraction of municipal solid wastes (OFMSW). The first system consisted of two coupled reactors packed with OFMSW (PBR1.1-PBR1.2) and the second system consisted of an upflow anaerobic sludge bed reactor (UASB) coupled to a packed reactor (UASB2.1-PBR2.2). For the start-up phase, both reactors PBR 1.1 and the UASB 2.1 (also called leading reactors) were inoculated with a mixture of non-anaerobic inocula and worked with leachate and effluent full recirculation, respectively. Once a full methanogenic regime was achieved in the leading reactors, their effluents were fed to the fresh-packed reactors PBR1.2 and PBR2.2, respectively. The leading PBR 1.1 reached its full methanogenic regime after 118 days (Tm, time to achieve methanogenesis) whereas the other leading UASB 2.1 reactor reached its full methanogenesis regime after only 34 days. After coupling the leading reactors to the corresponding packed reactors, it was found that both coupled anaerobic systems showed similar performances regarding the degradation of the OFMSW. Removal efficiencies of volatile solids and cellulose and the methane pseudo-yield were 85.95%, 80.88% and 0.109 NL CH4 g(-1) VS(fed) in the PBR-PBR system; and 88.75%, 82.61% and 0.115 NL CH4 g(-1) VS(fed0 in the UASB-PBR system [NL, normalized litre (273 degrees K, 1 ata basis)]. Yet, the second system UASB-PBR system showed a faster overall start-up.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号