首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  完全免费   5篇
  综合类   12篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   3篇
  2010年   1篇
  2006年   1篇
排序方式: 共有12条查询结果,搜索用时 31 毫秒
1.
曝气生物滤池快速启动和活性保持性能研究   总被引:6,自引:2,他引:4  
研究了两级曝气生物滤池处理生活污水时各级的快速启动和在低负荷下活性保持的能力,考察了出水中主要污染物和生物滤池内生物量随时间的变化情况。结果表明,碳氧化生物滤池从低负荷恢复时,所需要的时间与活性保持时的负荷大小有关,负荷越小,所需要的时间越长。在极端情况下,恢复时间接近一次完全启动的时间,因此碳氧化生物滤池的低负荷维持并没有太大的实际意义。而硝化生物滤池在低负荷下活性保持良好,重新启动仅需要完全启动1/10的时间,这就有可能以低成本实现硝化生物滤池的活性保持。  相似文献
2.
杨文君  郭迎庆  杜尔登 《环境科学》2014,35(5):1793-1797
采用间歇实验对纳米零价铁(nZVI)除四价硒(Se(Ⅳ))进行实验性研究,考察了地下水中共存离子对nZVI除Se(Ⅳ)动力学的影响.结果表明,在厌氧条件下,当nZVI投加量为0.1 g·L-1,Se(Ⅳ)浓度为100μmol·L-1,NaCl浓度为0.01 mol·L-1,pH=7.0,T=25℃±1℃时,投加CO2-3或SO2-4浓度为1 mmol·L-1、腐殖酸(humic acid,HA)为5 mg·L-1时,明显抑制了Se(Ⅳ)的去除.投加0.5 mmol·L-1Ca2+或Mg2+时,对除Se(Ⅳ)影响不大;而Ca2+(3 mmol·L-1)、Mg2+(3 mmol·L-1)时,Se(Ⅳ)的去除效率明显下降.未加共存离子时,Se(Ⅳ)在20 min时基本去除完,共存离子存在的情况下,nZVI对Se(Ⅳ)的去除率在30 min时达到100%.反应过程中二价铁(Fe2+)随着Se(Ⅳ)的去除趋于平稳.ORP在反应过程中快速从正值下降至负值,由此说明nZVI除Se(Ⅳ)的过程发生了还原反应.  相似文献
3.
UV/H2O2降解羟苯甲酮反应动力学及影响因素   总被引:2,自引:1,他引:1       下载免费PDF全文
有机防晒剂随着日常使用不断进入环境中,成为一类新兴污染物。考察了 UV/ H2 O2工艺对典型有机防晒剂羟苯甲酮(BP-3)的水相光化学降解特征,并对 BP-3降解反应的影响因素包括初始 BP-3浓度、 H2 O2浓度、 UV 光强、共存阳离子和阴离子、叔丁醇和腐殖酸投加量等进行了研究。结果表明,BP-3的降解速率常数随初始 BP-3浓度升高而降低,随着H2 O2浓度增大而增高,随着 UV 光强增强而增大;阴离子会在一定程度上降低反应速率,阳离子中 Fe3+会产生类芬顿反应,促进生成?OH,对降解反应有显著的促进作用,投加叔丁醇和腐殖酸皆会抑制降解反应进行。采用每一对数减小级电能输入(EEo )指标对 UV/ H2 O2工艺的电能利用效率进行了评价,Fe3+的加入显著减小了 EEo 。研究不同因素对 UV/ H2 O2工艺降解效果的影响,可对实际工程中采用 UV/ H2 O2去除苯甲酮类有机防晒剂提供参考。  相似文献
4.
近年来抗生素类污染物对环境的影响及其生态毒性日益引起广大研究者的关注。对TiO2光催化降解典型抗生素类污染物磺胺二甲嘧啶(SMT)进行了研究。采用中心组合设计方法(CCD)进行试验设计,使用响应面方法(RSM)对光催化过程中的影响因素(TiO2浓度、初始磺胺二甲嘧啶浓度、双氧水浓度)进行了探讨和分析,并对反应过程进行了优化。优化结果表明,最佳反应条件为:TiO2浓度1.74 g/L、初始磺胺二甲嘧啶浓度20.0 mg/L、双氧水浓度106.28 mg/L,在优化条件下的磺胺二甲嘧啶光催化实际去除率为83.6%。响应面方法能够优化光催化条件,预测光催化结果,有利于优化光反应器的设计,对于工程化光催化水处理技术的发展具有一定的参考价值。  相似文献
5.
杜尔登  郑璐  冯欣欣  高乃云 《环境科学》2014,35(11):4163-4170
通过限制性片段长度多态性技术考察了饮用水深度处理中5种不同来源生物活性炭的微生物群落多样性和结构.单宁酸与腐殖酸吸附值相对较高的A炭、B炭和C炭的多样性指数较为接近,其微生物多样性更为丰富,而单宁酸与腐殖酸吸附值相对较低的D炭、E炭多样性指数较低.生物活性炭样品的系统发育树中包含β-Proteobacteria、α-Proteobacteria、Planctomycetes、γ-Proteobacteria、Bacteroidetes等5类种群.其中β-Proteobacteria和α-Proteobacteria是微生物群落的优势种群,对水中有机物的去除起到重要的作用.Planctomycetes、γ-Proteobacteria和Bacteroidetes是微生物群落的非优势种群.Bacteroidetes出现在A炭、B炭、C炭和D炭中,而没有出现在E炭中.研究结果进一步加深了对生物活性炭中微生物群落的认识,为确保饮用水质安全提供理论基础.  相似文献
6.
针对环境水体中药物及个人护理用品(PPCPs)的污染问题,选择在环境水体中存在的有机紫外防晒剂二苯甲酮-3(BP-3)作为典型污染物,以颗粒活性炭(GAC)、粉末活性炭(PAC)和碳纳米管(CNT)作为吸附剂,考察吸附剂对BP-3的吸附性能、吸附特性和吸附热力学.结果表明:吸附性碳材料对BP-3具有良好的吸附性能,3种碳材料的最大吸附容量排列为:PAC> GAC> CNT,其中,PAC的单层最大吸附容量为450.36 mg·g-1.Freundlich、Redlich-Peterson和Temkin吸附等温线方程能够较好地拟合吸附数据,Langmuir吸附等温线方程对PAC的吸附拟合效果较好,而对粒径较大的吸附剂(GAC、CNT)的拟合效果不理想.PAC、GAC的吸附过程可以采用一级动力学或者二级动力学模型拟合,而CNT适合采用一级动力学模型来描述.吸附热力学分析表明,PAC、GAC和CNT对BP-3的吸附过程都是自发进行的,其中,PAC和GAC的吸附过程是吸热的,升高温度有利于吸附反应的进行;而CNT的吸附过程是放热的.  相似文献
7.
药用活性化合物(PhACs)在氯消毒过程中生成消毒副产物的问题引起了广泛关注.以典型PhACs物质萘普生(NAP)为研究对象,考察各因素对游离氯与NAP反应的影响,探究NAP氯化机制并进行风险评估.结果表明,NAP氯化反应遵循一级反应动力学,NAP在氯化过程中的降解率和反应速率常数随着NAP初始浓度和氨根离子投加量的增加而降低,随着游离氯初始浓度的增加而增大,酸性条件下更有利于NAP的氯化反应.基于HPLC-MS/MS分析鉴定出5种含氯降解中间产物,并提出氯化NAP反应机制.ESCOAR风险预测和发光菌毒性分析表明氯化NAP过程中生成了毒性更高的中间产物,对饮用水安全可能构成潜在威胁.  相似文献
8.
药物与个人护理品(PPCPs)对水体环境的潜在风险日益引起人们的关注.采用固相萃取-高效液相色谱串联质谱(SPE-LC/MSMS)检测方法,考察了11种典型PPCPs在城镇污水处理厂尾水及其周围地表水和地下水中的赋存与分布特征,并采用RQ模型对其潜在的生态风险进行了浓度评估.结果表明:11种典型PPCPs中有9种被检出,尾水、地表水和地下水中均检出布洛芬、双氯芬酸、吉非罗齐、卡马西平和罗红霉素等目标物质,其中布洛芬的检出浓度高达166.00 ng/L;PPCPs浓度在地表水和地下水中呈现出时间变化特征,主要受尾水排放、降雨产生的径流和稀释作用的影响;参照RQ模型评估水体中PPCPs的生态风险,结果显示在所有检出的目标物质中,布洛芬、双氯芬酸和双酚A的风险商值都大于0.1,表明其对水体的生态环境存在中等风险,这与该3种目标物质的频繁使用密切相关.  相似文献
9.
水中溶解性有机物(DOM)对全球污染物迁移和水处理工艺效能具有重要影响.采用3种典型碳材料,包括碳纳米管(CNTs)、颗粒活性炭(GAC)、粉末活性炭(PAC)分别吸附微污染源水中的DOM.基于荧光发射-激发光谱(EEMs)和平行因子(PARAFAC)分析,解析DOM中的有效荧光组分,评估3种材料对不同组分吸附去除的效果和吸附特征.研究表明:PARAFAC分析方法提取4种荧光组分C1和C2(腐殖酸类)、C3和C4(类蛋白类).以TOC为基础的吸附等温线模型表明,PAC的KF值大于GAC和CNTs,PAC有丰富的中孔和较大的比表面积,吸附容量比GAC和CNTs更大.C3和C4 2个荧光组分在吸附过程中更容易被吸附,PAC对两者吸附容量最大.研究结果揭示了不同碳吸附材料对水中不同类型有机物的吸附特征,可为吸附工艺应用提供技术参考.  相似文献
10.
基于三维荧光光谱考察了污水厂深度处理过程中溶解性有机物(DOM)的荧光组分特征,结合平行因子分析(PARAFAC)解析出3个荧光组分,包括2个腐殖质类物质(C1、C3)和1个色氨酸类蛋白物质(C2).臭氧工艺对组分C1、C2、C3去除率分别为69.1%、71.5%和66.5%,表明臭氧对DOM有较好去除效果.三维荧光光谱结合PARAFAC分析能够较好反映水中DOM的去除情况,有利于污水处理效果的定性分析、定量评价,易于实时在线监测.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号