首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  国内免费   1篇
  完全免费   19篇
  综合类   35篇
  2019年   4篇
  2018年   4篇
  2017年   2篇
  2016年   2篇
  2015年   4篇
  2014年   5篇
  2013年   5篇
  2012年   3篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2006年   1篇
  2003年   1篇
排序方式: 共有35条查询结果,搜索用时 31 毫秒
1.
深圳地区典型大气污染过程分析   总被引:17,自引:0,他引:17  
分析了深圳地区2003~2004年发生的6个典型污染过程.基于WRF中尺度气象模式的分析表明深圳地区的空气污染过程主要受副热带高压、热带气旋及变性冷高压脊的影响.HYSPLIT气流轨迹分析说明珠江三角洲上游地区的污染对深圳地区存在影响,当深圳处于海上气团控制时,空气质量较好.  相似文献
2.
珠江三角洲一次典型复合型污染过程的模拟研究   总被引:16,自引:2,他引:14       下载免费PDF全文
利用空气质量模式系统(MM5-CAMQ-SMOKE),模拟珠江三角洲一次典型的复合型污染过程,研究O3、NOx及能见度等的时空变化,分析各种气溶胶的质量比例以及对消光的贡献.从模拟结果来看,模式系统能很好的模拟此次过程中光化学烟雾标识物的时空分布,以及灰霾的发生、减弱再到进一步加剧的过程.PM2.5占PM10的质量浓度份额平均为79.8%.爱根核和积聚核的数浓度比巨核数浓度平均高3~4个数量级.在气溶胶质量权重中,硫酸盐所占的比重最高,占PM2.5权重达到31%,元素碳为21%,有机碳为14%,铵盐为7.2%,硝酸盐为2%.在平均相对湿度下,二次气溶胶对消光的贡献超过50%,而在高相对湿度的情况下,二次气溶胶对消光的贡献超过70%.可见此次珠江三角洲地区能见度恶化主要是由各种化学过程生成的细粒子引起.  相似文献
3.
珠江三角洲典型过程VOCs的平均浓度与化学反应活性   总被引:15,自引:3,他引:12       下载免费PDF全文
分析了珠江三角洲秋季VOCs在相对污染与清洁情况下的日变化特征.污染情况下的VOCs质量浓度可达清洁情况下的2.2倍,污染富集的是甲苯、二甲苯、乙苯、正丁烷、戊烷、丙烷、乙炔、乙烯等物种.自然排放的异戊二烯具有早晚浓度低而白天浓度高的日变化规律,体现植物的光合作用特征;而人类活动污染排放的甲苯其日变化规律基本反映了气象条件与污染源排放日变化的影响,在相对污染情况下早上出现明显的污染富集,午后出现污染低值.反应活性较强的物质主要是烯烃(反式-2-丁烯、异戊二烯、顺2-戊烯)与芳香烃(间对-二甲苯、甲苯);烯烃的质量百分比最低,却占最高的化学反应活性百分比.  相似文献
4.
珠江三角洲气溶胶光学厚度的观测研究   总被引:15,自引:6,他引:9       下载免费PDF全文
利用2004年1月至2007年6月的多波段太阳光度计数据反演珠江三角洲地区的气溶胶光学厚度(AOD),对仪器定标方法和反演结果进行了分析,并以反演结果为基准,比对检验MODIS的AOD产品.分析表明:在使用Langley法进行仪器定标时,用迭代方法进行数据筛选处理,定标结果更为合理.统计结果显示:珠三角区域春季AOD值较大,秋夏季次之,冬季较小;4个站点AOD的季节变化特征具有一致性;珠三角区域AOD的年平均值大于0.7,气溶胶造成的到达地表的直接可见光辐射透过率衰减至少有50%一60%,造成严重的霾天气;从频率分布看,AOD值主要集中在0.4~0.6区间.4个站点的α值在1.2~I.6区间内所占的比例很高.频率分布类似,表明此区域内气溶胶粒子平均有效半径较小且较一致,同属于城市-工业型气溶胶类型;α与AOD没有明显的可辨析关系,通过样本统计和典型个例分析,表明区域内清洁与污染过程气溶胶粒子模态稳定,平均半径变化不大,粒子数浓度上的差别是产生消光效果不同的主要原因.以地面太阳光度计反演的AOD为基准,验证MODIS卫星遥感的AOD,结果表明,MODIS卫星遥感AOD在珠三角区域具有较好的量化精度,并初步建立珠三角区域卫星遥感AOD的订正公式.  相似文献
5.
广州番禺大气成分站挥发性有机物的污染特征   总被引:12,自引:0,他引:12       下载免费PDF全文
应用GC/FID在线挥发性有机物(VOCs)检测仪,于2011年6月~2012年5月在中国气象局广州番禺大气成分观测站进行了1a的连续监测,获得了具有高时间分辨率的VOCs组成、含量及其时间变化规律.结果表明:VOCs浓度月变化范围是(40.99~65.400)×10-9,月平均浓度48.10×10-9,冬季VOCs浓度高于夏季.VOCs日浓度变化范围是(35.10~59.13)×10-9.VOCs组分随季节变化所占比例不同,烷烃、烯烃和芳香烃全年平均所占比例分别为58%、16%和26%.采样点在7月份没有周末效应,而在12月份表现出显著周末效应.国庆长假期间的大气VOCs浓度比国庆节放假前、后均有大幅度降低,降幅分别达到39.3%和56.7%.采样点的大气VOCs浓度与风速呈负相关性.当风向为NNE、NE和SSW时,风速较大,VOCs的浓度较低;当风向为WNW和ENE时则相反.由于夏季温度高使溶剂挥发性和植物排放增强,所以导致BTEX(苯、乙苯、甲苯和二甲苯)和异戊二烯的浓度在夏季明显高于冬季.  相似文献
6.
利用2004年5月至2005年8月在广州番禺观测的一套陆气相互作用资料,结合污染物浓度资料分析广州地区污染过程与清洁过程的湍流交换特征,重点分析了近地层稳定度、风、湍流能量、物质通量与污染物的关系.分析表明平均风速与平均湍流能量的相关系数高达0.9以上,风速越大湍流能量也越大;污染物浓度与平均风速、湍流能量的相关性较高,其次是与水汽通量,均呈显著的负相关关系.污染过程期间平均风速、湍流能量与水汽通量仅为清洁过程的0.48、0.59、0.51倍,不利于污染物平流与扩散的气象条件降低一半,导致污染物的累积可达3~6倍.污染过程期间污染物之间存在较好的相关,尤其是PM10与NO2之间的相关性较高;而在清洁过程期间,污染物之间的相关性显著下降,PM10与NO2之间的相关性很低.  相似文献
7.
珠江三角洲大气排放源清单与时空分配模型建立   总被引:8,自引:0,他引:8  
收集整理2012年珠江三角洲地区(简称“珠江三角洲”)各种大气人为源及天然源基础活动数据,以排放因子法“自下而上”为主计算多污染物排放量,并建立本地化污染物空间分配方案及基于行业排污特征的时间分配谱,构建了具备时空分布属性的区域性网格化大气源排放清单.清单结果显示,2012年珠江三角洲SO2、NOx、CO、PM10、PM2.5、VOCs和NH3排放总量分别为55.2万t、102.9万t、349.2万t、95.2万t、38.5万t、153.9万t和17.7万t. 固定燃烧源是珠江三角洲SO2和NOx的最大排放贡献源,其中电厂和锅炉分别贡献了35.0%和41.8%的SO2排放,以及28.2%和16.2%的NOx排放;VOCs的最大贡献源是过程源,其中家具制造、石油精炼、油气码头排放量总和占比为52.4%;扬尘源是颗粒物的主要来源之一,对PM2.5的排放贡献达42.3%;NH3的主要排放源为畜禽养殖和化肥施用源,两者排放量占比分别为50.7%和26.8%.珠江三角洲大气污染物空间与时间分布结果显示,高排放污染源主要集中于“东莞-广州-佛山”一带,呈半环带状结构分布;白天时段(9:00~20:00)的排放强度明显高于夜晚时段(21:00~次日8:00);夏秋季节(4~10月)的排放强度略高于冬春季节(11月~次年3月).  相似文献
8.
2010年广州亚运期间空气质量与污染气象条件分析   总被引:7,自引:2,他引:5       下载免费PDF全文
利用2010年11月4日~12月10日广州地区NO2、O3、SO2、PM、能见度实测资料,区域空气污染指数RAQI及大气输送扩散特征参数,分析广州亚运期间空气质量与气象条件变化特征.结果表明,亚运期间空气质量比亚运前后好,能见度比亚运前后大,PM1和PM2.5浓度比亚运前后小,能见度与PM1和PM2.5有较好的反相关;亚运期间NO2和SO2日均值和小时均值均达到国家一级标准,PM10日均值和O3小时均值均满足国家二级标准,污染物得到较好的控制;广州地区SO2受本地源和外地源远距离输送叠加影响,NO2受本地源影响较大;广州周边城市NO2、SO2和PM10有向广州输送的潜势,而广州O3有向其周边城市扩散的潜势;亚运期间污染气象条件比亚运前后有利,亚运期间污染物浓度降低得益于政府实施的减排措施及良好的气象条件.  相似文献
9.
在广州番禺大气成分站(GPACS)应用在线监测仪器对异戊二烯进行长达1年的观测,获得异戊二烯浓度变化特征、大气化学活性和来源规律.结果表明:广州地区异戊二烯日均浓度为1.12 ppbv,由于受光照和温度影响较大,各月日均浓度在0.07~2.72 ppbv范围内波动.异戊二烯在冬季的日变化规律与其他季节不同,呈现双峰值变化,较大峰值出现在下午14:00,主要受光照和温度影响;较小峰值出现在晚上22:00左右,主要受机动车排放影响.采用最大增量活性(Maximum Incremental Reactivity,MIR)因子加权法和等效丙烯浓度法均发现异戊二烯的大气化学活性在监测的VOCs物种中最强,分别占总活性的15.45%和36.74%.通过异戊二烯与机动车标志性物质3-甲基戊烷、顺-2-丁烯的比值发现,广州地区异戊二烯在冬季夜晚主要来源于机动车排放,在秋季和春季夜晚也受到机动车排放影响,而夏季夜晚受机动车排放最不明显.这主要是由于在冬季、秋季和春季,监测点主要受到来自广州城区污染物输送的影响,而在夏季污染物从广州郊区输送使监测点受机动车排放的影响很小.异戊二烯与3-甲基戊烷、顺-2-丁烯在各季节的白天都没有线性关系,表明白天异戊二烯的排放受机动车的影响不大.  相似文献
10.
邹宇  邓雪娇  李菲  殷长秦 《环境科学》2017,38(6):2246-2255
通过对广州番禺大气成分站(GPACS)的历史观测数据进行分析,结果表明在P1(2011-09-02~2011-09-05)和P2(2012-06-12~2012-06-15)期间发生典型灰霾过程并伴有高臭氧(O3)值事件的发生.在P1和P2复合污染过程中,日能见度变化范围分别为5.78~6.91 km和5.60~9.25 km,最大8 h O3体积分数分别为92.14×10-9和91.29×10-9.在检测到的55种挥发性有机物(VOCs)中,烯烃和芳香烃的活性最高,对等效丙烯浓度和最大O3体积分数的贡献分别为41%、39%,28%、54%(P1过程)和35%、46%,22%、61%(P2过程).利用气溶胶生成系数(FAC)估算污染过程的二次有机气溶胶(SOA)的生成潜势,发现烷烃、烯烃、芳香烃对SOA的生成潜势分别占13.2%、21.4%、65.4%(P1过程)和4.6%、13.8%、81.6%(P2过程).甲苯、异戊二烯、乙苯、间/对二甲苯是对O3与SOA生成贡献大的物种.污染物从城区的输送、持续静小风、高温低湿以及强烈辐射共同导致这两次灰霾过程中高臭氧浓度事件的形成.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号