首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   4篇
综合类   9篇
  2021年   4篇
  2020年   2篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
侯雪伟  吕鑫  魏蕾 《环境科学学报》2021,41(7):2598-2606
基于cost733模型及大量再分析资料、观测资料,对2013—2019年冬季海平面气压及近地面风场进行正交和斜交旋转主成分分析,讨论这两种分型方法及不同分型数量下我国天气形势、降水及细颗粒物(PM2.5)的差异.结果表明,斜交旋转主成分分析法相比于正交方法,划分的天气形势更具代表性,其中,划分为4类天气形势最具代表性,即西伯利亚冷高压影响范围最广、出现频率最高的Type1;西伯利亚冷高压强度最弱、出现频率最低、重度污染站点比例最大、污染最重的Type2;京津冀等地容易出现锋面天气、降水强度最大、清洁站点比例最大、污染最轻的Type3;受东北部深厚冷低压影响、重污染较少的Type 4.  相似文献   
2.
利用常规地面气象和探空资料、ERA-interim再分析资料、以及全国PM2.5浓度数据,针对2015年3月7~11日一次冷空气南下的锋面天气过程中,我国华北、华东地区出现的大范围空气污染,开展了高空各层天气形势分析,以及本次过程中污染区域由北至南6个城市(北京、章丘、郑州、南阳、武汉、长沙)边界层气象要素的垂直结构及其时空演变特征的研究.结果表明:在污染前期(3月7~8日)中高纬度500hPa平直的纬向环流和地面均压场,为污染天气的发生和维持以及空气污染物的集聚提供了有利的环流场.污染中期(3月8~10日)冷空气南下,地面冷高压向华东地区移动,重污染区域随冷高压前部的弱低压场或均压场由北向南移动.伴随着天气系统移动,六个地面观测站的边界层特征在时空上表现出相似性,由北向南各站在污染期间先后出现多层逆温,风速较小,逆温层下相对湿度较大.此次多层逆温的形成是由于夜间近地面辐射冷却、冷锋移动过程中产生的锋面逆温以及边界层以上的下沉运动造成的.本研究揭示了在天气系统移动中,位于天气系统相同部位站点的边界层结构具有共同的特征,及其与空气污染的关系.  相似文献   
3.
利用常规地面气象和探空资料、ERA-interim再分析资料、以及全国PM2.5浓度数据,针对2015年3月7~11日一次冷空气南下的锋面天气过程中,我国华北、华东地区出现的大范围空气污染,开展了高空各层天气形势分析,以及本次过程中污染区域由北至南6个城市(北京、章丘、郑州、南阳、武汉、长沙)边界层气象要素的垂直结构及其时空演变特征的研究.结果表明:在污染前期(3月7~8日)中高纬度500hPa平直的纬向环流和地面均压场,为污染天气的发生和维持以及空气污染物的集聚提供了有利的环流场.污染中期(3月8~10日)冷空气南下,地面冷高压向华东地区移动,重污染区域随冷高压前部的弱低压场或均压场由北向南移动.伴随着天气系统移动,六个地面观测站的边界层特征在时空上表现出相似性,由北向南各站在污染期间先后出现多层逆温,风速较小,逆温层下相对湿度较大.此次多层逆温的形成是由于夜间近地面辐射冷却、冷锋移动过程中产生的锋面逆温以及边界层以上的下沉运动造成的.本研究揭示了在天气系统移动中,位于天气系统相同部位站点的边界层结构具有共同的特征,及其与空气污染的关系.  相似文献   
4.
2012年6月8~11日,江苏安徽2省发生了一次持续性的空气污染过程.利用MODIS观测的气溶胶产品和地面气象资料,结合火点监测资料和HYSPLIT后向轨迹模式,分析气溶胶光学厚度(AOD)、细粒子比例(FMF)、空气污染指数(API)的特征,探究这次空气污染的形成原因.研究表明,这次过程中苏皖2省8个代表城市的能见度大部分时间低于10km,相对湿度低于90%,API均达到或超过污染等级,AOD显著增长,且污染物以人类活动产生的细粒子为主.区域细粒子比例(RFMF)达0.79,高FMF(>0.6)出现的概率高达74.8%.另外,苏皖2省稳定的天气形势,不利于污染物扩散.6月8~11日,苏皖2省(北部地区为主)出现大量的火点,表明有秸秆焚烧现象的存在.从HYSPLIT模式的模拟结果来看,苏皖2省8个代表城市在此期间主要受到偏西方向的气流以及局地气流的影响,偏西方向的气流有利于外部秸秆焚烧的污染物经过输送影响本地区,同时局地气流不利于扩散,从而造成污染物积累,形成污染.  相似文献   
5.
基于卫星遥感和地面观测资料的霾过程分析   总被引:3,自引:0,他引:3  
利用MODIS、CALIPSO卫星观测的气溶胶产品和地面空气质量、气象资料,并结合HYSPLIT后向轨迹模式,探讨了2013年12月1~9日长江三角洲地区一次持续性的严重霾污染过程的形成、特征及其可能来源.研究表明,此次污染过程中长江三角洲地区8个代表城市大部分时间处于霾污染的状况下,气溶胶光学厚度(AOD)显著增长,空气质量指数(AQI)均达到或超过污染限值,且以中度以上污染为主.污染发生时,气溶胶主要存在于地面至2km的大气层内,尤其是850m以下.根据体积退偏比和色比得出球形气溶胶出现频率高于非球形气溶胶,大粒径气溶胶出现频率高于小粒径气溶胶,进而得到污染期间气溶胶的主要类型为“污染型”气溶胶.污染物的近距离的输送和持续小风,无降水的静稳气象条件而导致污染物难以扩散稀释而累积在本地是造成长江三角洲区域污染范围广、时间长、程度重的主要原因.  相似文献   
6.
为了研究石家庄冬季霾过程的形成原因及污染物变化特征,对2015年12月17—26日一次持续性霾过程中地面气象要素、天气背景场、PM(PM_(2.5)和PM_(10))、气态污染物(SO_2、CO、NO_2和O_3)、边界层垂直结构和数浓度垂直分布进行了综合观测分析.结果表明,华北上空稀疏的等压线和均压场结构、地面小风、高湿度的气象条件为这次霾污染的发生和持续提供了有利的动力和水汽条件.霾过程中PM_(2.5)、PM_(10)、SO_2、NO_2、O_3和CO的平均浓度分别为208.1、299.4、75.3、81.9、13.1μg·m~(-3)和4.2 mg·m~(-3),分别是清洁天的5.8、4.5、1.4、2.4、0.5和4.7倍.逆温层的存在阻碍了近地层气溶胶粒子向高层的传输.逆温层上部层边界层内0.3μm和0.3~2.5μm的气溶胶数浓度分别减少了25%~40%和63%~85%.在200 m高度内,0.3、0.3~0.5、0.5~1.0和1.0~2.5μm的气溶胶在霾天的平均数浓度分别为503.0、295.7、103.9和8.9 cm~(-3),分别是清洁天的2.8、17.8、31.9和24.4倍.  相似文献   
7.
采用MOZART-4模式并引入在线源追踪方法量化分析北美和欧洲对我国对流层臭氧(O3)的贡献,整体来说模拟值能较好地与观测值对应.结果表明,北美和欧洲对流层对我国近地层O3贡献较低,夏季体积分数分别为0.3×10-9和0.6×10-9;冬季略高,均为0.9×10-9.北美对我国自由对流层O3贡献较高,不同季节体积分数峰值均超过3.8×10-9,而欧洲对我国自由对流层的贡献在夏季最高可达7.3×10-9.呈现以上特征的原因是虽然冬季弱光照条件不利于O3生成,但东亚的下沉气流能增加北美和欧洲对我国近地层O3的贡献;夏季北美和欧洲对流层内O3的生成量大幅增加,但地中海沿岸的下沉气流能减少北美和欧洲大陆西岸对中国O3的贡献而对欧洲整体影响较弱.此外中国地表的上升气流也会减少北美和欧洲对中国近地层O3的贡献.HYSPLIT模拟的输送路径表明冬季由于下沉气流的影响,北美近地层气团难以传输至我国,而自由对流层有13条轨迹到达我国;此时欧洲在东亚下沉气流作用下不同高度均有较多轨迹到达我国.夏季受地中海下沉气流影响北美没有到达中国的轨迹,欧洲到达我国的轨迹同样为一年中最少.  相似文献   
8.
根据东亚酸沉降网(EANET)和全球温室气体数据中心(WDCGG)等观测资料,对比各地区近地面O3的季节变化特征,在全球大气化学传输模式MOZART-4中引入在线源追踪方法,结合收支分析,确认各项作用对不同地区O3的贡献量.研究表明,模拟结果能够再现各地区O3的季节变化特征以及收支量:清洁背景地区(海洋站居多)近地面O3各项收支量较小,体积分数在-3×10-9-3×10-9/d之间,且净的化学作用大多处于损耗O3的状态;大多数陆地测站净的光化学作用为产生O3(约33.8×10-9/d).近地面O3的源主要来自对流层内部,平流层的贡献较小(约10×10-9).对于极地及清洁背景地区,平流层的贡献是O3季节变化的重要原因.平流层的贡献呈现明显的季节变化,即冬季最大(约20.7×10-9),夏季最低(约2×10-9).  相似文献   
9.
基于空气质量数据、天气图、常规地面气象观测数据、秒探空资料以及高分辨率的降水数据,剖析了2015年12月19—27日发生在我国东部地区的一次大范围重度污染过程的特征及成因.结果表明,此次污染过程中,我国东部地区主要受到东路冷高压、均压场以及西路冷高压的影响,在东路冷空气及均压场的影响下,BTH(Beijing-Tianjin-Hebei)地区污染物不断累积,西路冷空气影响下污染物浓度开始降低,YRD(Yangtze River Delta)地区在稳定的均压场下污染物不断累积.污染期间,BTH及YRD近地层均有逆温现象发生,且逆温层越厚、强度越大,污染越重.此外,较低的近地面风速、较高的相对湿度,亦不利于污染物的扩散稀释,导致此次重度污染事件的发生和持续.YRD地区在重度污染发生时,有降水现象发生,导致YRD地区PM2.5浓度呈现波动性变化.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号