首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   1篇
  国内免费   13篇
综合类   17篇
评价与监测   2篇
  2022年   1篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2015年   1篇
  2014年   2篇
  2013年   2篇
  2012年   1篇
  2010年   2篇
  2009年   1篇
排序方式: 共有19条查询结果,搜索用时 140 毫秒
1.
亚运时段广州大气污染物来源数值模拟研究   总被引:18,自引:9,他引:9  
利用嵌套网格空气质量预报模式系统(Nested Air Quality Prediction Model System,NAQPMS)研究2006年亚运时段广州的空气质量状况,同时结合污染源追踪方法,分析珠三角各城市的源排放对广州全市、广州二环以内市区、广州6个亚运加强观测站的污染物浓度贡献.结果表明,NAQPMS模式能较好地反映广州各污染物(NO2、SO2、PM10)浓度的变化;广州全市、广州市区、6个亚运加强观测站的污染物最主要来源于本地排放,而周边城市以东莞的贡献最大.3个源受体中,广州市区受本地排放的影响最显著,来自本地的NO2、SO2、PM10的月均贡献率分别为89.5%、75.4%、86.7%;东莞则对6个亚运加强观测站的影响最为突出,其NO2、SO2、PM10的月均贡献率达9.3%、23.8%、21.7%,而日最大贡献率高达19.3%、40.2%、48.7%.因此在大力削减广州本地污染排放的同时,对周边城市特别是东莞实施区域联防联控,将能有效改善亚运场馆附近的空气质量.  相似文献   
2.
东亚春季边界层臭氧的数值模拟研究   总被引:5,自引:2,他引:3  
利用嵌套网格空气质量模式系统(NAQPMS)对2004年4月东亚边界层(距地面2km以下)臭氧进行了数值模拟,并评估了东亚边界层光化学反应的活性.结果表明:东亚春季臭氧呈带状分布,其高值区〔φ(O3)>55×10-9〕主要集中在30°N~40°N.受东亚季风气候控制,沿蒙古、中国东北以及日本一线有一强臭氧输送通道,输送通量达3×10-5mol/(m2.s).通过计算边界层O3光化学净生成率可知,光化学影响主要集中在高污染源排放地区,其与水平输送对臭氧影响的分布具有负相关性,说明光化学生成的O3可被输送至下风地区,而不仅限于局地.  相似文献   
3.
珠三角冬季PM2.5重污染区域输送特征数值模拟研究   总被引:4,自引:2,他引:2  
利用嵌套网格空气质量模式系统(NAQPMS)及其耦合的污染来源追踪模块,针对2013年1月珠三角区域的PM_(2.5)重污染过程输送特征进行了数值模拟研究.结果表明,污染气团首先形成于广州、佛山地区,并在弱偏北风的作用下南移加强,影响整个珠三角区域.重污染期间,广州(64.9%)、佛山(58.9%)的PM_(2.5)主要来自本地贡献,是区域输送最主要的来源地区;中山(51.9%)、珠海(66.2%)的PM_(2.5)主要来自外来贡献,是区域输送主要的受体地区.重污染期间,广州和佛山对中山的PM_(2.5)日均贡献率之和总体保持在25%以上,污染最重时达到40%.交通(26%)、工业(24%)、扬尘(16%)、火力发电(15%)和生物质燃烧(8%)是对中山贡献最大的5类源:工业源中山本地与外来输送贡献率基本相当;交通和扬尘源以中山本地贡献为主,贡献率分别为55%和67%;火力发电和生物质燃烧源以外来输送为主,贡献率分别为56%和62%.各类排放源的外来输送中,以广州、佛山所占的比例最大.  相似文献   
4.
利用多方位监测数据和气象资料,分析了2010—2011年春季外来沙尘输送对北京市空气质量指数的影响,提出外来沙尘对北京市空气质量级别影响的预报判据。此外,基于NAQPMS模型的沙尘模块,开展数值预报研究,并对北京市2010年3月一次沙尘天气污染过程进行数值模拟试验,结果表明,模拟的PM10浓度值与实测值有较好的一致性。通过判别预报和数值模拟两种预报技术的开展,可以预报沙尘输送影响的空气质量级别、沙尘分布和演变规律,为进一步开展空气质量预报预警和防控沙尘工作打下了很好的科学基础。  相似文献   
5.
基于集合卡尔曼滤波的区域臭氧资料同化试验   总被引:6,自引:0,他引:6  
基于集合卡尔曼滤波方法和嵌套网格空气质量模式系统建立了一个区域空气质量资料同化系统(RAQDAS),并利用该系统开展了京津冀地区2008年北京奥运会期间的地面臭氧观测资料同化试验,分析了同化系统订正臭氧初始场对24 h臭氧预报的影响.试验结果表明采用50个集合样本的集合卡尔曼滤波同化不仅改进了观测站点的臭氧预报,也提高了观测以外区域的臭氧预报技巧,使得臭氧预报的均方根误差平均下降了15%,并且当集合样本数减小到20时也可达到相近的预报改进效果.为了解决滤波发散问题,分别采用了放大集合离散度和扰动模式误差源两种方法.其中放大集合离散度能避免滤波发散,但没有提高臭氧预报技巧,反而导致预报误差的增加;扰动模式误差源不仅解决了滤波发散问题,也使同化导致的臭氧预报均方根误差下降比例从15%进一步提高到20%.  相似文献   
6.
华北火电厂脱硫对奥运期间区域空气质量的影响   总被引:5,自引:1,他引:4  
采用MM5-CMAQ模式系统模拟研究了2006—2008年间华北火电厂脱硫工程实施对奥运期间区域空气质量的影响,并对比研究了脱硫前后华北地区二氧化硫(SO2)、硫酸盐气溶胶(ASO4)浓度及能见度的变化.结果表明,华北火电厂脱硫可有效削减区域SO2和ASO4浓度,在奥运气象条件下,脱硫促使京津冀、山东北部、山西东部、内蒙河套地区SO2浓度下降1~10 ppbv,而大部分地区ASO4浓度下降约1μg·m-3.北京是SO2浓度降低最明显的地区,其SO2浓度下降百分比超过50%;太行山脉沿线、泰山地区是ASO4浓度下降最明显的地区,浓度降低达2μg·m-3.火电厂脱硫同时促使北京、河北大部、山西北部及内蒙南部地区的能见度上升0.5 km以上.  相似文献   
7.
西安是关中盆地经济发展的核心城市,特殊的地形和工业发展导致冬季细颗粒物(PM2.5)污染严重,制定科学合理的治理措施迫切需要明确PM2.5的来源.本文基于空气质量模式CAMx(Comprehensive Air Quality Model with extensions)、颗粒物源解析模块PSAT(Particulate Source Apportionment Technology)及融入多种来源数据后建立的排放清单来量化西安地区本地及区域传输贡献.在本文研究的重污染过程中,模式的模拟精度合理,模拟与观测值相关系数为0.78,FAC2达到95%.PSAT模块在本次重污染过程中对西安PM2.5的来源解析结果显示:在城区,西安本地为最大的排放源区,日均贡献率均大于60%,其次为咸阳8%,省外的传输为6%;在郊区,西安本地的贡献减少,传输贡献增加,其中阎良区传输贡献达到83%.对西安城区的一次细颗粒物面源排放量减少50%模拟后,城区和郊区来自周边区域渭南或咸阳的贡献率有6%~8%的增长.该研究结果表明需要从本地排放管控和区域联防两方面来改善西安地区的空气质量.  相似文献   
8.
作为我国大气污染治理重点区域汾渭平原的重点城市,西安正处于城市建设迅速发展阶段,建筑扬尘排放量大,极大地影响了西安的空气质量.本研究基于西安市建筑和市政施工工程的调查资料,结合两套由不同机构测量的我国北方典型城市排放因子,估算获得了西安市2017年建筑施工扬尘PM_(10)、PM_(2.5)的排放量及排放强度,构建了西安市区县级别建筑扬尘排放颗粒物清单,并分析其空间分布特征.结果表明:①引用中国环境科学研究院依据建筑扬尘产生类型测定的排放因子,估算获得2017年西安市建筑施工扬尘PM_(10)、PM_(2.5)排放总量分别为6.8×10~4、1.4×10~4 t,其中,作业施工扬尘排放量占总排放量的74%,风蚀扬尘占26%;②引用北京市环境保护科学研究院构建的建筑扬尘季节性排放因子,估算西安市建筑施工扬尘PM_(10)、PM_(2.5)排放总量分别为10.8×10~4、2.2×10~4 t,建筑扬尘排放量存在着明显的季节差异,夏季、秋季、冬季的扬尘排放量明显低于春季,但冬季略高于夏季、秋季;③综合两套排放计算结果表明,估算的建筑扬尘排放量存在50%的差异,西安2017年建筑扬尘PM_(10)排放量约为6.8×10~4~10.8×10~4 t,PM_(2.5)排放量约为1.4×10~4~2.2×10~4 t;④空间分布上,主城区建筑施工扬尘排放量大,约占总排放量的72%;主城区建筑施工扬尘排放强度高,约为郊区县的29倍.  相似文献   
9.
北京夏季近地面臭氧及其来源的数值模拟研究   总被引:4,自引:0,他引:4  
高浓度的近地面臭氧一直是北京夏季面临的主要污染问题,本文利用自主发展的空气质量数值模式WRF-NAQPMS(Weather Research and Forecasting Model-Nested Air Quality Prediction Modelling System)以及生物源排放模式MEGAN(Model of Emission of Gases and Aerosols from Nature),数值模拟了2017年6月华北区域臭氧的时空分布,评估了生物源排放可挥发有机物对臭氧的影响,并对北京臭氧的关键源区和形成时间进行量化解析.结果发现:NAQPMS (Nested Air Quality Prediction Modelling System)模式合理再现了北京及其周边臭氧的时空演变规律,特别是生物源的加入有效改善臭氧浓度的模拟效果.生物源对北京6月臭氧浓度月均值的贡献为4%~6%,对最大1小时浓度的贡献最高可达8%以上.源解析结果发现,本地当天排放的臭氧前体物对北京城区浓度影响最大,对最大1小时浓度和8小时移动平均浓度的贡献达到50.2%和45.4%,远高于1~2天前排放污染物的影响.河北对北京的影响主要集中在当天和1天前排放的污染物,对最大1小时浓度的贡献分别为7.9%和6.5%.河南和山东对北京城区最大1小时浓度的贡献较小,分别为2.4%和3.7%,且主要为1~2天前排放的污染物在区域输送过程中的化学反应所贡献.对于北京区域平均来讲,本地的贡献率较城区明显偏小,河北的贡献显著增加,这也说明北京市臭氧来源的空间不均匀性较大.北京地区生成的臭氧沿怀柔区向北输送,到达承德市西侧,对月均值的贡献达到20~30μg·m~(-3).  相似文献   
10.
不同时刻污染减排对北京市PM2.5浓度的影响   总被引:1,自引:0,他引:1  
利用空气质量模式Model-3/CMAQ及京津冀地区高分辨率排放源清单,针对有代表性的污染时段(2012年2月7~16日),设置了5种不同时刻的减排方案(在污染峰值提前4d、提前3d、提前2d、提前1d及当天减排),对比在同样的减排比例下,不同时刻开始减排的效果差异.研究发现,提前采取减排控制措施比污染峰值当天开始减排对降低PM2.5浓度的影响更为明显,而且提前采取应急减排的时间越早,PM2.5浓度下降越明显.提前1d、2d、3d减排海淀站和城六区峰值浓度下降率分别为23%和22%、31%和30%、39%和38%,均明显高于当天减排的峰值浓度下降率10%和9%.但随着提前天数的增加,PM2.5峰值浓度进一步下降的幅度越来越小,减排效益较之前显著降低.提前4d减排海淀站和城六区峰值浓度下降率分别为40%和39%,提前4d减排和提前3d减排对降低污染峰值日PM2.5浓度的效果已没有太大差别.同时针对另一个污染时段(2012年1月11~20日)进行了相似的敏感性试验,得出了类似的结论.因此,针对某些污染事件的应急减排,综合考虑减排成本和减排效果,根据气象条件的预报,在可能引起重污染事件的不利气象条件来临时提前2~3d采取减排措施效果最好,既能有效降低PM2.5浓度,也可以避免因盲目长时间减排造成的成本过大.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号