首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  国内免费   4篇
环保管理   1篇
综合类   4篇
  2021年   1篇
  2019年   1篇
  2015年   1篇
  2013年   2篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
霾不同发展阶段下污染气体和水溶性离子变化特征分析   总被引:10,自引:9,他引:1  
王振彬  刘安康  卢文  杨晓旻  王红磊  陈魁  夏丽 《环境科学》2019,40(12):5213-5223
为探讨霾不同阶段下大气污染物的变化特征,使用MARGA观测了2018年11月18日~12月7日长三角地区一次区域霾过程中前体污染气体(NH_3、HNO_3、SO_2)和8种水溶性离子浓度.结合环保数据(PM_(2.5)、NO_2、CO、O_3)和气象数据,分析此次区域霾过程的成因、大气污染物的日变化特征以及在霾不同阶段下大气污染物的分布特征.结果表明,此次霾过程中长三角地区主要受到高压脊控制,天气形势稳定,有利于大气污染物累积.霾天时PM_(2.5)、NO_2、NO_3-、SO_24-、NH_4+、Cl-和Na+的浓度分别为(118. 91±39. 23)、(61. 62±26. 34)、(45. 64±16. 01)、(18. 80±8. 02)、(20. 82±7. 16)、(3. 02±2. 25)和(0. 23±0. 22)μg·m-3,分别是干净天的2. 73、1. 63、2. 64、1. 94、2. 50、2. 05和2. 56倍;霾天CO的浓度为(1. 34±0. 39)mg·m-3,是干净天的1. 86倍.不同大气污染物的日变化特征不同.霾不同阶段下大气污染物的分布特征不同.SO_2的浓度在霾发生阶段最高; PM_(2.5)、NO_2、NH_3、CO和SNA的浓度在霾发展阶段最高; O_3、Cl-、Na+和K+的浓度在霾消散阶段最高.SNA在霾不同阶段下对PM_(2.5)的相对贡献可达94%~96%,且在发展阶段的增速最大,增速排序为NO_3- NH_4+ SO_24-. SNA在干净天、发生阶段和发展阶段以NH_4NO_3为主,在消散阶段(NH_4)2SO4为主.此次霾过程主要由NO_3-增长导致,NO_3-在霾发生、发展和消散阶段对PM_(2.5)的相对贡献分别为51. 06%、51. 85%和48. 22%,主要通过气相均相反应生成.  相似文献   
2.
采用湿法除尘技术,对油田联合站、接转站使用的燃油加热炉吹灰时产生的烟尘,进行过滤、吸附、除尘。对9个联合站的加热炉进行监测,采用此技术后,烟尘浓度从1 000mg/m3以上降至200mg/m3以下。处理后的烟尘排放浓度达到GB 13271—2001《锅炉大气污染物排放标准》Ⅱ时段排放标准要求,减轻了加热炉吹灰时对周边环境的影响。  相似文献   
3.
夏丽  朱彬  王红磊  康汉青 《环境科学》2021,42(2):556-563
为研究长三角地区细颗粒物污染的分布特征及其光学特性,选择在城市(苏州)、郊区(南京)和区域背景站(临安)同时进行PM2.5采集并进行化学分析.这次污染过程中,苏州、南京和临安的PM2.5平均浓度分别达到(169.8±56.5)、(169.9±51.2)和(154.0±54.9)μg·m-3.散度系数分析显示3个站点气象要素和PM2.5化学成分的差异较小,PM2.5污染呈现同步性和区域化特征.利用化学成分法估算的消光系数在苏州、南京和临安分别是(561±223)、(655±340)和(679±349) Mm-1,与能见度法估算的消光系数之间相关度较高(r为0.73~0.80).利用PMF模型解析PM2.5的污染来源,二次硝酸(32%)和二次硫酸(25%)的占比最大,其次是生物质燃烧(16%)、不完全燃烧源(7%)、燃料燃烧(7%)、土壤地壳源(8%)和海洋源(5%).对PM2.5消光系数的主要贡献源是二次生成的硝酸硫酸源、不完全燃烧和生物质燃烧源.与质量浓度的源贡献相比,二次硝酸硫酸源的占比降低了约4%,不完全燃烧源的贡献增加了5%,说明PM2.5的各类源对其质量浓度和消光系数的贡献效率存在差别.  相似文献   
4.
南京市北郊夏季挥发性有机物的源解析   总被引:20,自引:15,他引:5  
杨辉  朱彬  高晋徽  李用宇  夏丽 《环境科学》2013,34(12):4519-4528
2012年8月利用在线气相色谱仪对南京市北郊大气环境中的挥发性有机物(VOCs)进行连续监测,分析VOCs时间变化规律,并利用PMF(positive matrix factorization)受体模型和CPF(conditional probability function)方法对其来源进行解析.结果表明,南京市北郊夏季VOCs日变化呈双峰分布,小时平均体积分数为(33.84±27.77)×10-9,夜间高于昼间.其中含量最高的是烷烃,其次是烯烃和芳烃,分别占到总挥发性有机物(TVOCs)的49.3%、24.4%和18.5%,乙炔占7.8%.南京市北郊夏季VOCs主要来源有5个,分别是交通尾气、燃料挥发、工业排放、有机溶剂挥发和植物排放源,各自对TVOCs贡献为33.1%、25.8%、23.2%、8.1%和9.7%.烷烃主要来源于汽车尾气排放、工业排放和燃料挥发,贡献百分比分别为23.7%、35.3%和31.3%;烯烃主要来源于燃料挥发、工业排放和汽车尾气排放,分别占41.1%、18.4%和24.3%;对芳烃贡献最大的为汽车尾气排放,占到49.2%,其次是有机溶剂挥发排放占30.8%.  相似文献   
5.
南京北郊秋季VOCs及其光化学特征观测研究   总被引:27,自引:21,他引:6  
采用GC5000挥发性有机物在线监测系统和EMS系统,于2011年11月在南京北郊开展了为期一个月的连续观测,分别测量了大气中56种VOCs组分和反应性气体(NOx、CO和O3).结果表明,南京北郊的VOCs小时平均体积分数大约在48.17×10-9,日变化呈明显双峰型特征,受机动车影响比较显著,极小值出现在下午16:00,白天与O3浓度曲线呈负相关;VOCs的平均OH消耗速率常数约为3.26×10-12cm3.(molecule.s)-1,最大增量反应活性约为3.26 mol·mol-1;烯烃对OH消耗速率(LOH)和臭氧生成潜势(OFP)贡献率最大,芳香烃次之,而烷烃在大气中含量最为丰富,却并不是LOH和OFP主要贡献者;VOCs关键活性组分是乙烯、丙烯、1-丁烯、间,对-二甲苯及异戊二烯等物质;臭氧生成过程处于VOCs控制区.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号