首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   3篇
  国内免费   10篇
综合类   15篇
污染及防治   2篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2009年   3篇
  2008年   2篇
  2007年   5篇
  2006年   3篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.
为了研究序批式生物膜反应器中的细菌多样性及其脱氮的微生物学机理,为工艺改进提供依据,从同步高效去除垃圾渗滤液中高氨氮和高COD的SBBR生物膜和渗滤液原水中采集微生物样品并提取微生物总DNA,使用细菌通用引物对(GC341F/907R)从总DNA中成功扩增出目标16S rDNA片段,然后对扩增的16S rDNA进行DGGE,对凝胶染色并进行条带统计分析和切胶测序,使用序列数据进行同源性分析并建立了系统发育树.结果表明,该驯化后的SBBR生物膜和渗滤液原水中都有比较丰富的细菌多样性,驯化的生物膜细菌主要来自渗滤液原水,而且生物膜细菌在反应器正常运行时不会出现明显的群落结构变化;在该SBBR中有多种硝化细菌与反硝化细菌、好氧反硝化细菌和厌氧氨氧化细菌共存,说明该反应器中可能同时存在全程硝化反硝化、同步硝化反硝化和厌氧氨氧化3种脱氮方式.研究结果为SBBR脱氮微生物机理研究提供了一些有价值的参考依据.  相似文献   
2.
控制游离氨实现单级自养生物脱氮的研究   总被引:2,自引:1,他引:1  
通过实时调控SBR反应器内的游离氮浓度的控制策略,实现以亚硝化作用和厌氧氨氧化作用协同的单级自养生物脱氮工艺.实验分成亚硝酸菌富集和厌氧氨氧化菌混合接种2个阶段,SBR内的温度始终保持在(31±2)℃.亚硝酸菌富集阶段,pH值稳定在7.8左右,通过调节进水氩氮浓度(56~446 mg·L-1)实现FA浓度的变化,从而实...  相似文献   
3.
进水模式对SBBR性能及氮形态转化的影响   总被引:2,自引:0,他引:2  
通过对4种不同进水模式下序批式生物膜反应器(SBBR)的性能、微生物群落结构以及氮形态转化的差异分析, 比较不同进水模式对SBBR性能和氮形态转化的影响及其产生的机制. 结果表明, 分散式进水模式表现出比一次性进水更好的脱氮效率和更高的抗冲击负荷能力, 在达到相同的处理效率的前提下, 分散式进水模式M4的COD和氨氮负荷最高可达2 540和540 mg·(L·d)-1, 而一次性进水模式M1仅能分别达到2 000和420 mg·(L·d)-1;分散进水模式能降低一次性进水所带来的冲击性负荷, 将负荷均化分散到周期内的各个时段, 同时也减少了进水对微生物的稀释作用, 使得单位体积内有效微生物的数量相对充足, 从而提高反应器的负荷能力. 在分散进水模式下, 从M4与M2、M3的对比来看, 分散模式的进水规律越接近运行模式的循环规律, 反应器的氮素转化效率就越高, 残留的氮素总量也就越低.  相似文献   
4.
黄孢原毛平革菌用于煤炭脱硫的特性   总被引:4,自引:0,他引:4  
 研究了表面活性剂Tween80、碳源浓度、初始pH值、孢子浓度和煤浆浓度对黄孢原毛平革菌(Phanerochaete chrysosporium)煤炭脱硫的影响.结果表明,黄孢原毛平革菌具有较强的脱除煤炭中硫的能力.该菌株的最佳脱硫条件为0.5%Tween80,20g/L葡萄糖,10%煤浆,孢子浓度1×105个/mL,pH4.5.在此最佳条件下,第3d的菌丝球生长均匀,生物量最大,第6d的煤样脱硫率达到78.11%.  相似文献   
5.
通过在5组相同型号的SBBR反应器(A、B、C、D和E)内调节进水中的Ca2+含量,研究Ca2+在净水生物膜团聚体培养过程的作用影响.结果表明,进水Ca2+投加浓度为25 mg/L时驯化培养的生物膜团聚体具有较好的抗挤压能力,抗压强度达到了22 N/cm2,密度为1.059 g/cm3,活性微生物的百分含量达到了86.90%,远远高于一般污泥团聚体中的微生物含量.分析运行效果,反应器C和D的生物膜团聚体通过29 d的驯化培养就达到了一个比较好的净水效果,并能维持稳定状态,相比于一般生物膜反应器的驯化时间有所缩短.不同进水负荷条件下氮氮的去除率变化表明,反应器C和D针对不同进水负荷表现出来的适应效果明显优于其他反应器.  相似文献   
6.
茶树菇废菌体对水中Cr(Ⅵ)吸附的响应面优化及机理研究   总被引:4,自引:2,他引:2  
采用响应面优化(Box-Behnkendesign,BBD)法对茶树菇废菌体吸附水中Cr(Ⅵ)的过程进行了优化,并设定pH值、Cr(Ⅵ)初始浓度、反应时间、摇床转速和吸附剂用量为5个影响因子,Cr(Ⅵ)吸附率为响应值,对吸附过程的热力学特征及吸附机理进行了研究.结果表明,对废菌体吸附Cr(Ⅵ)有显著影响的因素是pH值、Cr(Ⅵ)初始浓度和吸附剂用量;废菌体对Cr(Ⅵ)吸附的最佳条件为pH=1.19,Cr(Ⅵ)初始浓度为148.58mg·mL-1,反应时间为89.02min,摇床转速为180.12r.min-1,吸附剂用量为10.90g.L-1,在此条件下,实测Cr(Ⅵ)的吸附率达96%以上.用Langmuir、Freundlich及Dubinin-Raduskevich吸附等温模型对吸附过程进行拟合发现,Langmuir模型可以很好地反映茶树菇废菌体对Cr(Ⅵ)的吸附特性,在298K时最大吸附量为46.95mg·g-1.对表观热力学参数ΔG、ΔS及ΔH的计算表明,废菌体对Cr(Ⅵ)吸附为吸热的自发过程,并且吸附过程增加了体系的混乱度.最后结合FTIR图对吸附机理进行了探讨,结果表明,废菌体对Cr(Ⅵ)具有良好的吸附效果,可用于处理含铬废水,达到以废治废的目的.  相似文献   
7.
亚硝化颗粒污泥对温度变化的响应特性研究   总被引:7,自引:4,他引:3  
采用序批式反应器(SBR),以实验室已经培养好的具有良好亚硝化积累的颗粒污泥(短程硝化积累率90%以上)为接种污泥,考察了温度变化对亚硝化颗粒污泥特性、稳定性、氮转换性能及活性的影响.结果表明,温度对亚硝化颗粒污泥的结构和短程硝化性能都有着重要的影响.在30℃时,亚硝化颗粒污泥具有良好的絮凝和沉降性,污泥结构紧密,亚硝化积累率维持在96.17%,污泥容积指数(SVI)为39 mL.g-1,平均粒径为3.03 mm.当温度降至25℃时,由于胞外多聚物(EPS)浓度升高,蛋白质与多糖比值的下降,导致亚硝化颗粒污泥的电负性升高,同时污泥表面的疏水性减弱,结构变得松散,亚硝化颗粒污泥发生了解体,亚硝化积累率在35%以下,短程硝化被破坏.在15℃时,虽然亚硝化颗粒污泥也发生了解体,并且解体现象加剧,但是由于颗粒污泥表面氧气传质深度的增大,使得反应器中氨氧化菌(AOB)的数量相对增大,出水亚硝化积累率最终稳定在68%左右.  相似文献   
8.
以氨氮浓度较高的垃圾渗滤液为处理对象,分析研究了不同供氧策略对SBBR反应器实现短程硝化厌氧氨氧化的影响.在4种不同供氧策略(a、b、c和d的总供氧时间分别为16h、12h、12h和8h;好氧/厌氧交替频率分另U为4h/2h、3h/3h、2h/2h和2h/4h)下同步启动反应器,保持各反应器内环境温度为(30.0±4-0.5)℃,并控制曝气阶段溶解氧(DO)浓度为(1.2±0.1)mg·L-1.实验结果表明,反应器内的微生物经过124d的驯化和增殖,具有一定的脱氮能力,但是效果不同,其中,采用总供氧时问为12h,好厌氧交替频率为2h/2h供氧策略的反应器c效果最好,氨氮去除率达到96.6%左右,而且抗氨氮冲击负荷的能力最强,最大的氨氮容积负荷为0.186 g·(L·d)-1;在曝气阶段由于DO浓度的限制,亚硝酸盐出现积累;缺氧阶段,由于厌氧氨氧化细菌和反硝化细菌的协同作用,亚硝酸盐氮和氨氮同时被去除,且没有硝酸盐的积累.从4个反应器和渗滤液原水中提取细菌总DNA,通过PCR-DGGE技术获得DGGE图谱.分析图谱中各泳道的条带数目和条带亮度、各泳道间的相似性系数C,值,结果表明,不同供氧策略对反应器内的细菌多样性和种群结构产生了较大影响.  相似文献   
9.
室内空气高浓度苯系物的蚕豆根尖遗传毒性研究   总被引:6,自引:0,他引:6  
蚕豆根尖微核(micronucleus,MCN)检测技术是一项检测水环境致突性因素的成熟技术,该研究采用敏感的松滋青皮蚕豆为材料,在密闭容器中模拟室内空气的高浓度苯系物污染,对蚕豆根尖进行染毒,然后用显微镜观察蚕豆根尖细胞中的微核.通过对实验结果进行污染指数(PI)和t检验分析表明:在所有实验浓度下,苯、甲苯和二甲苯都对蚕豆根尖细胞产生了遗传毒害效应;对受试物质量浓度和微核率进行一元线性回归分析后得到线性方程,表明二者间存在线性关系.该实验结果还表明,利用蚕豆根尖微核检测技术检测室内空气中较高浓度的苯系物污染是完全可行的.  相似文献   
10.
供氧充足环境下SBBR实现短程硝化的控制研究   总被引:2,自引:0,他引:2  
在供氧充足条件下对序批式生物膜反应器SBBR实现短程硝化的途径和机理进行研究.以垃圾渗滤液为处理对象,控制反应器主要环境参数为:溶解氧(DO)5mg/L, pH7.0,温度(t)25℃,采用全排水方式,进水周期为12h.通过数学推导和模型分析,确定以游离氨FA、C02和HN02浓度为直接控制因素,进水周期为间接控制因素,在SBBR反应器中实现了有效的短程硝化.结果表明,在氨氮NH ,4-N容积负荷0.52kg/(m3·d), NaHCO3浓度1.5mg/L的进水条件下, NH 4-N转化率达到89%, NO-2-N积累率达到83%,短程硝化作用显著.由此得出FA浓度是供氧充足情况下实现亚硝态氮NO-2-N积累的关键因素, CO2作为氨氧化细菌AOB的碳源,则具有进一步提升反应器性能的作用.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号