首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   3篇
  国内免费   3篇
安全科学   9篇
废物处理   5篇
综合类   4篇
污染及防治   2篇
  2021年   1篇
  2020年   2篇
  2019年   3篇
  2018年   1篇
  2017年   1篇
  2015年   2篇
  2013年   2篇
  2012年   4篇
  2009年   1篇
  2007年   2篇
  2006年   1篇
排序方式: 共有20条查询结果,搜索用时 15 毫秒
1.
以生活污水处理厂剩余活性污泥为原料,制备粉末活性污泥(PAS)作为生物吸附剂,考察p H值,PAS投加量,U(Ⅵ)初始浓度和吸附时间对PAS吸附U(Ⅵ)的影响,探讨了PAS吸附U(Ⅵ)的作用机理。实验结果表明,在U(Ⅵ)初始浓度为10 mg/L时,其最佳吸附p H值为3,去除率97.77%,吸附平衡时间120 min;吸附过程较好地拟合了准二级动力学模型(R2≈1)和Freundlich等温模型(R2≈1);X射线能谱和离子交换实验分析表明,离子交换为其主要吸附方式,参与交换的主要离子为Ca2+;红外光谱分析表明,PAS吸附U(Ⅵ)后自身结构未发生改变。以0.1 mol/L的HCl溶液作为解吸液,初次解吸率达92.83%,循环利用3次仍具有较好的吸附效果。  相似文献   
2.
用人工驯养的厌氧污泥进行除铀实验,探讨了微生物投加量(VSS)、pH值、U(Ⅵ)初始浓度、外加电子供体和污泥重复利用等对污泥处理U(Ⅵ)的影响,并进行了相关机理分析。实验结果表明,在适当的pH范围内(5.2~6.6),厌氧污泥对铀保持较长时间的高效去除率;当以还原铁粉和无水乙醇作电子供体时,U(Ⅵ)去除率保持在95%以上的时间为未加电子供体时的2倍。U(Ⅵ)去除速度与VSS投加量成正比关系,U(Ⅵ)初始浓度对去除效果的影响不大,厌氧污泥可以长期使用。pH值的影响最关键,其次是外加电子供体。厌氧污泥除U(Ⅵ)机理为氧化还原和吸附的共同作用。  相似文献   
3.
通过序批式试验研究了腐殖酸(Humic Acid,HA)对铀的吸附行为及时间、吸附剂用量、铀的初始质量浓度、pH值、温度和共存离子等试验条件对吸附的影响,分析了其热力学和动力学过程,用扫描电镜(SEM)、红外光谱(FT-IR)手段分析了相关吸附机理.结果表明,吸附过程在60 min后达到动态平衡,吸附率最高达99%以上.当pH值在5左右时,HA投加量越大,吸附效率越高.体系中HCO3-、H2PO4-;的存在对HA吸附U(Ⅵ)有促进作用,而柠檬酸根离子、EDTA2-及Cr6+、Mn2+使HA对U(Ⅵ)的吸附率降低,影响程度与其离子浓度正相关.准二级吸附动力学方程可以较好地描述HA吸附U(Ⅵ)的动力学规律,R2=0.9951.当温度为25℃时,U(Ⅵ)质量浓度与吸附量之间的关系符合Langmuir经验公式,饱和吸附容量为170.94 mg/g.HA吸附U(Ⅵ)前后的IR光谱分析表明,HA主要含有—OH、—COOH、—NH2、—C—N、苯环等结构,推断与U(Ⅵ)相互作用的主要基团为—OH、—C=O、—C—N—、—NH2.  相似文献   
4.
生物还原法是一种修复铀污染地下水体的有效方法,值得开展广泛研究。文章在阐述铀种类及迁移性的基础上,从生物还原机理及主要微生物等方面对生物还原法进行概括介绍;同时探讨了生物群落结构、氧化剂、电子供体等因素对生物还原效率及产物稳定性的影响,总结并提出了生物还原的一系列强化方法及实地应用,最后对未来的研究方向进行了展望,以期为今后生物还原的进一步研究提供参考。  相似文献   
5.
微生物吸附处理低浓度含铀废水的效能   总被引:3,自引:0,他引:3  
生物吸附是目前处理低浓度含铀废水最有前途的方法之一.本文探讨了不同种类微生物的来源及其对铀的吸附效能.分析了生物吸附过程的影响因素和吸附机理.细菌、放线菌、真菌和藻类对铀的吸附能力依次递减,pH值、菌种预处理、共存离子和金属初始浓度是生物吸附的主要影响因素;微生物的细胞结构在生物吸附过程中发挥了重要的作用,静电吸附、酶促反应、无机微沉淀和氧化还原等是生物吸附的主要机理.最后预测了生物吸附处理低浓度含铀废水的研究方向.  相似文献   
6.
采用水培方式研究了不同质量浓度(0、0.1 mg/L、1 mg/L、5mg/L、10 mg/L、20 mg/L)铀胁迫下香根草光合色素质量比、可溶性蛋白质质量比、丙二醛(MDA)含量、抗氧化酶(超氧化物歧化酶SOD、过氧化物酶POD、过氧化氢酶CAT)活性、非酶物质(非蛋白巯基NPT、谷胱甘肽GSH和植物络合素PCs)含量的变化.结果表明,铀质量浓度为0.1 mg/L和1 mg/L时,可促进香根草光合色素和可溶性蛋白质质量比的增加,但随铀质量浓度增加,光合色素和可溶性蛋白质质量比逐渐下降.铀胁迫诱导香根草体内MDA含量、POD活性和CAT活性呈明显升高的趋势,SOD活性则表现为逐渐下降的趋势.不同质量浓度铀胁迫对香根草根部NPT、GSH和PCs含量无明显影响,铀质量浓度为0.1 mg/L时香根草根部NPT、GSH和PCs含量略有增加;随铀胁迫质量浓度增加,叶片内GSH含量逐渐下降,NPT和PCs含量则逐渐升高.  相似文献   
7.
采用聚乙烯亚胺(PEI)改性氨基化锆基金属有机骨架材料(UiO-66-NH2)制备了UiO-66-NH2/PEI,利用XRD、SEM和FTIR对产物进行了表征,并将其用于吸附水中的U(Ⅵ)。考察了UiO-66-NH2/PEI吸附U(Ⅵ)的影响因素,并研究了吸附动力学和等温线。实验结果表明:UiO-66-NH2/PEI对U(Ⅵ)具有良好的吸附效果,PEI与UiO-66-NH2质量比为30%、溶液pH为6、吸附剂投加量为80 mg/L、吸附时间为120 min、初始U(Ⅵ)质量浓度为10 mg/L时,UiO-66-NH2/PEI对U(Ⅵ)的去除率达98.2%(303 K下);UiO-66-NH2/30%PEI对U(Ⅵ)的吸附在60 min内达到平衡,吸附过程符合准二级动力学模型和Langmuir模型,最大吸附量达452.49 mg/g。  相似文献   
8.
选用农林剩余物加工制得生物炭,用强氧化剂(KMnO_4、H_2O_2、HNO_3)对生物炭进行化学改性,选择最佳改性方法。通过吸附试验得出用0.01 mol/L KMnO_4改性的生物炭除铀效果最佳。采用KMnO_4改性的生物炭对废水中的铀进行吸附,考察吸附剂投加量、溶液pH值、吸附时间、溶液初始质量浓度等因素对U(Ⅵ)去除效果的影响。结果表明,当吸附剂投加量为0.3 g/L、U(Ⅵ)质量浓度为10mg/L、溶液pH=6、温度为25℃、吸附时间为120 min时,改性生物炭对U(Ⅵ)的去除效果最佳,吸附量达到32.57 mg/g,比未改性前提高了67.9%。对改性前后的生物炭进行了SEM、XRD、FTIR表征及表面含氧官能团测定、吸附动力学分析。结果表明,改性生物炭对U(Ⅵ)的吸附过程符合准二级动力学方程及Langmuir等温吸附模型(决定系数R20.99)。这表明对溶液中铀的去除可能是化学沉淀作用的结果,改性后含氧官能团增加,对溶液中铀的去除也可能存在官能团络合作用与表面吸附,使吸附剂化学吸附能力增强,除铀能力提高。  相似文献   
9.
凤眼莲、大薸对铀胁迫的生理生化响应   总被引:3,自引:0,他引:3  
为探讨凤眼莲和大薸在铀胁迫下的生理生化响应,通过Hoagland水培试验,研究了不同铀质量浓度处理对凤眼莲和大薸的光合色素质量比、抗氧化酶(SOD、CAT、POD)活性、丙二醛(MDA)含量、游离脯氨酸质量比的影响,以及凤眼莲和大薸对铀的富集能力。结果表明:随铀处理质量浓度增大,凤眼莲和大薸体内铀质量比增加,在50 mg/L铀胁迫下,两者体内铀的质量比达1 550.2 mg/kg和963.0mg/kg;在铀的质量浓度为0.1 mg/L时,凤眼莲和大薸的光合色素质量比无显著变化(p>0.05),随着铀质量浓度的增大,光合色素质量比持续降低;在铀的质量浓度为0.1~1 mg/L时,抗氧化酶系统在凤眼莲和大薸缓解较低质量浓度铀胁迫所引起的膜脂过氧化中发挥了重要作用;凤眼莲对铀的耐受能力要强于大薸;高质量浓度(20 mg/L和50 mg/L)铀处理下,凤眼莲和大薸抗氧化酶活性受到抑制;作为渗透调节物质,二者游离脯氨酸质量比均高于对照。  相似文献   
10.
采用溶液共混法制备了壳聚糖/氧化石墨烯(CS/GO)复合材料,探讨了GO含量、pH值、CS/GO投加量、时间以及U(Ⅵ)初始浓度等对CS/GO吸附U(Ⅵ)效果的影响.试验结果表明,GO质量分数为40%,pH值为5时吸附效果最好,吸附在5 h达到平衡.准二级动力学模型和Langmuir等温吸附方程可较好地拟合其吸附过程,30℃时饱和吸附量为227.3 mg·g-1.CS/GO对U(Ⅵ)的吸附是自发的吸热反应.SEM、FTIR和XRD分析结果表明,CS/GO表面凹凸不平,羟基和氨基是U(Ⅵ)的主要结合位点.解吸试验结果表明CS/GO具有良好的重复使用性能.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号