首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  国内免费   8篇
安全科学   2篇
综合类   9篇
  2023年   1篇
  2022年   1篇
  2018年   2篇
  2017年   4篇
  2016年   1篇
  2012年   2篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
2011年校车事故频发,致使《校车安全条例》广纳意见。意见还未出台,如今又见校车乱象——在河南汝州、湖北十堰等地,一些报废车辆非法拼装成为校车,流入农村。公众的愤慨情绪与安全焦虑再次被点燃。 河南汝州事件不是一个孤立的事件。它暴露出我国汽车产业在回收再制造上的很多深层次问题,追于粗放的报废机制,早已不适应现实社会发展的需要。希望这一事件被曝光后,相关规定能够尽快出台和修订……  相似文献   
2.
该文利用WPS、β射线测尘仪、EMS污染气体监测系统的观测数据,结合观测期间天气形势,分析了青奥会期间南京不同天气型下气溶胶数浓度和污染气体的分布特征。结果表明:观测期间气溶胶数浓度平均为7 302个/cm~3,污染气体(NOx、O_3、SO_2、CO)平均浓度分别为23.09、55.1、8.7和867.3μg/m~3。不同天气型下气溶胶粒径分布差异较大,鞍型场(Ⅱ)、副热带高压(Ⅴ)和冷涡(Ⅲ)控制下数浓度谱呈单峰型分布;大陆高压和热带气旋外围(Ⅰ)控制下数浓度谱呈双峰型分布;冷高压(Ⅳ)控制下数浓度谱呈三峰型分布。同时日浓度变化差异也大,N_(10~300 nm)在Ⅰ型、Ⅲ型、Ⅳ型呈三峰型,在Ⅱ型、Ⅴ型呈双峰型;NOx和CO在Ⅰ型分别呈三峰型和单峰型,其余都是双峰型;O_3一直呈单峰型。  相似文献   
3.
使用宽范围颗粒粒径谱仪(WPS)对2015年1月和4月南京北郊大气气溶胶数浓度进行观测,使用多路径粒子剂量测量模型(MPPD)v.3.04模式估算不同空气质量指数(AQI)级别下、休息与运动状态下,细粒子在人体呼吸系统不同部位的沉积分数(DF)和沉积数浓度.结果发现,核模态和爱根核模态DF在休息和运动状态下近似,积聚模态DF在运动时是休息时的2.49倍.肺部对核模态和爱根核模态总沉积分数(TDF)贡献最大,休息时约占48.17%,运动时约占54.23%,头部对积聚模态TDF贡献最大,休息时约占41.23%,运动时约占80.47%.冬季人体内颗粒物沉积数浓度明显低于春季,各部位中总沉积数浓度大小为:肺部气管支气管头部.与休息时相比,运动时肺部核模态沉积增多,气管及支气管和头部积聚模态沉积增多,且头部表现出空气质量越差,运动较休息增长越多的特点.地区间DF的差异主要由于生理参数不同,沉积数浓度的差异主要由于当地环境中粒子数浓度不同.  相似文献   
4.
为研究青奥会期间不同天气条件下水溶性离子粒径分布特征,使用β射线测尘仪、安德森9级采样器和IC型离子色谱分析仪对南京2014-08-06~2014-09-04的PM_(2.5)、水溶性离子进行观测分析.将观测期间划分为晴天、雨天和阴天这3种天气类型.PM_(2.5)在不同天气条件下的平均浓度为晴天阴天雨天.PM_(1.1)、PM_(1.1~2.1)和PM_(2.1~10)中水溶性离子的浓度均是晴天阴天雨天,且降雨过程对细粒子的去除作用更为明显.Ca~(2+)和Mg~(2+)谱分布类似,呈双峰分布,降雨对SO_4~(2-)和NH_4~+在0.65~1.1μm清除作用较强.不同天气条件下NO_3~-/SO_4~(2-)比值均小于1,雨天和阴天时的NO-3/SO_4~(2-)值高于晴天.3种天气条件下SOR和NOR的值均大于0.1,SO_2和NO_2发生不同程度的二次转化,大气中存在更多的二次颗粒物.  相似文献   
5.
南京北郊大气BTEX变化特征和健康风险评估   总被引:4,自引:4,他引:0  
采用2013年3月21日~2014年2月28日GC5000在线气相色谱仪对南京北郊大气中的BTEX进行观测,利用EPA人体暴露分析评价方法对BTEX进行健康风险评估.结果表明,南京北郊大气中BTEX总量呈现春季冬季秋季夏季变化特征.BTEX浓度07:00~10:00与17:00~20:00时期较高,13:00~15:00之间最低;周末BTEX浓度高于工作日.BTEX来源包括交通源、工业源排放与溶剂挥发.BTEX四季HQ均表现为苯二甲苯乙苯甲苯,所有分析时段内HQ风险值都在安全范围.南京北郊R值呈现冬季秋季春季夏季的分布规律,R在所有分析时间都超安全阈值,存在致癌风险.  相似文献   
6.
冯悦政  安俊琳  张玉欣  王俊秀 《环境科学》2022,43(11):5030-5039
采用AMA GC5000BTX监测2014年1月~2016年12月南京北郊大气中苯、甲苯、乙苯、间/对-二甲苯、邻-二甲苯和苯乙烯(BTESX)的体积分数,分析了BTESX体积分数的变化特征以及气象要素对其的影响,并使用特征比值法(T/B)对BTESX的来源进行了定性分析,最后利用EPA的人体暴露分析评价方法对BTESX健康风险进行评估.结果表明,在观测期间,φ(BTESX)平均值为(7.28±6.63)×10-9,其中φ(苯)最高,为(2.45±3.91)×10-9,其他物种体积分数由大到小为:甲苯>乙苯>间/对-二甲苯>邻-二甲苯>苯乙烯,分别为:(2.41±2.61)×10-9、(1.37±1.28)×10-9、(0.51±0.48)×10-9、(0.30±0.36)×10-9和(0.22±0.42)×10-9.由于存在稳定的芳烃源,BTESX体积分数的月变化和季节变化均不如其他物种(NOx、CO、SO2和PM2.5等)明显.同时,BTESX及其他污染物的"周末效应"不显著.BTESX体积分数很大程度受到来自东北方向化工等企业以及交通主干道的污染物短距离输送的影响,导致BTESX体积分数在东北方向上较大.BTESX体积分数受到相对湿度和温度的共同影响,其高值区主要位于30%~70%相对湿度范围内,在该相对湿度范围内,温度越高,BTESX体积分数高值区域范围也越大.BTESX在不同季节的HI (危害指数)处于EPA认定的安全范围内,而R(苯致癌风险)值则高于EPA规定的安全阈值,同时HI和R值在夏季较高,因此需要高度重视.  相似文献   
7.
南京北郊大气臭氧周末效应特征分析   总被引:10,自引:6,他引:4  
本研究根据2013-12-01~2014-11-30南京北郊臭氧(O_3)及其前体物(NO_x、CO、VOCs)的观测资料,分析了工作日与周末O_3、NO_x、CO和VOCs质量浓度变化的差异及成因.结果表明,南京北郊O_3具有明显的"周末效应":即工作日O_3质量浓度高于周末,前体物质量浓度的变化与之相反;O_3平均质量浓度分别为19.84μg·m~(-3)(冬季)、53.45μg·m~(-3)(春季)、57.17μg·m~(-3)(夏季)和40.43μg·m~(-3)(秋季),春季的周末效应较其它季节更为明显.NO_2/NO工作日与周末分别为3.63和3.46,工作日比周末高4.81%.工作日O_3累积时间更长,O_3累积速率更快,大气氧化性更强,是工作日O_3质量浓度高于周末的原因.VOCs、NO_x、NO和NO_2与O_3质量浓度的相关性均呈现出工作日大于周末的特点.  相似文献   
8.
2011年校车事故频发,致使《校车安全条例》广纳意见。意见还未出台,如今又见校车乱象——在河南汝州、湖北十堰等地,一些报废车辆非法拼装成为校车,流入农村。公众的愤慨情绪与安全焦虑再次被点燃。河南汝州事件不是一个孤立的事件,它暴露出我国汽车产业在回收再制造上的很多深层次问题。过于粗放的报废机制,早已不适应现实社会发展的需要。希望这一事件被曝光后,相关规定能够尽快出台和修订……  相似文献   
9.
采用南京地区2015年1月至2016年12月期间的空气质量数据和常规气象资料数据,分析了南京地区O3浓度变化特征,建立基于轻量级梯度提升机(LightGBM)的O3浓度预测模型,并将该模型与支持向量机、循环神经网络和随机森林等3种在空气质量预测方向上常用的机器学习方法进行了对比,验证模型的有效性和可行性.结果表明,南京地区O3浓度变化具有显著的季节性差异,浓度变化受前期浓度、气象因子和其他空气污染物浓度的共同影响.LightGBM模型较为准确地预测了南京地区地面O3浓度(R2=0.92),且该模型的预测精度和计算效率等性能优于其他模型.尤其是在容易出现臭氧污染的高温天气,该模型预测准确性明显高于其他模型,模型稳定性较好.LightGBM具有预测准确度高、稳定性好、有良好的泛化能力和运算时间短等特点,在O3浓度预测方面具有显著的优势.  相似文献   
10.
南京北郊冬季挥发性有机物来源解析及苯系物健康评估   总被引:4,自引:3,他引:1  
采用2015年12月GC5000在线气相色谱仪对南京北郊大气中的挥发性有机物(VOCs)进行观测,结合PMF受体模型对VOCs进行来源解析分析其主要组成与变化特征.并利用美国环保署(EPA)人体暴露分析评价方法对VOCs中的苯系物进行健康风险评估.结果表明,南京冬季大气VOCs存在6种来源,天然气泄漏为32.05%,汽车尾气为18.99%,溶剂使用为13.67%,工厂排放2为13.20%,汽油挥发11.72%,工厂排放1(化工型)为10.36%.通过风向概率分析,发现排放源贡献高值区与观测点周边污染源分布较为一致.南京北郊B/T为0.74处于较高水平.非致癌风险危害商值(HQ)在06:00达到最高值.HQ风险值均在EPA认定的安全范围内.各来源HQ最高是汽车尾气排放为20.67×10-2,其次是溶剂使用为6.97×10-2和天然气泄漏为6.34×10-2.在6种来源中对于苯的致癌风险(R)中汽车尾气排放为4.11×10-6,天然气泄漏为1.09×10-6,均高于EPA规定的安全阈值.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号