首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   6篇
综合类   8篇
基础理论   1篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2016年   4篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
吉非罗齐在热活化过硫酸盐体系中的降解机制研究   总被引:2,自引:1,他引:1       下载免费PDF全文
以降血脂药物吉非罗齐(GEM)为目标污染物,研究其在热活化过硫酸盐体系中的降解机制.结果表明,GEM的降解过程符合准一级反应动力学规律,增加过硫酸盐初始浓度或升高反应溶液温度都可以显著提高GEM的降解速率常数(kobs),其反应的表观活化能Ea为133.14k J·mol~(-1).酸性和中性条件下GEM的降解效果要好于碱性条件.自然水体中的腐植酸(HA)和HCO_3~-对GEM的降解有明显的抑制作用.自由基清除实验表明,在酸性和中性条件下,SO_4~(·-)对GEM的降解起主导作用,而在碱性条件下,HO·成为体系主要的氧化物种.利用HPLC-MS/MS技术共检测到11种中间产物,推测GEM的降解路径涉及苯环的羟基化和醛基化反应、苯环侧链的环化作用和脱羧反应以及醚支链的断裂.  相似文献   
2.
采用一种简单高效的制备方法,利用SiO2为模板制备出具有更高催化活性的介孔氮化碳材料(mpg-C3N4),并通过透视电子显微镜(TEM)、X射线衍射(XRD)、氮气吸脱附测试(BET)、傅里叶变换红外光谱(FT-IR)、光电子能谱(XPS)对mpg-C3N4的形貌、组成结构进行表征.结果显示,mpg-C3N4表面存在大量直径约12nm的孔状结构,与g-C3N4相比,比表面积大幅度增大,并因此提供了更多的活性位点从而提高其光催化活性.使用紫外可见漫反射光谱(UV-vis DRS)和荧光光谱(PL)对其光电化学性能进行测试.结果表明介孔材料的引入使得氮化碳的吸收光谱发生红移,并降低了光生电子-空穴对复合率,从而提高对可见光利用效率.通过对诺氟沙星(NOR)的降解与吸附实验研究表明,NOR的光催化降解过程符合一级动力学和Langmuir-Hinshelwood动力学模型,而mpg-C3N4对NOR的吸附符合二级动力学,表明NOR的光催化降解主要发生在催化材料的表面且以化学吸附为主.吸附实验表明mpg-C3N4在30min内可以吸附56.78%的NOR,降解实验显示,光解1.5h后,超过90%的NOR可被降解.相比体相g-C3N4,mpg-C3N4表现出良好的吸附性能和光催化性能.pH值影响实验表明pH值约为7.41时达到最佳降解效果,主要归因于药物形态与材料表面电荷作用.淬灭实验表明O2·-和h+是降解体系中的主要活性物质.  相似文献   
3.
以中压汞灯为光源,研究环境浓度范围内硝酸根对甲芬那酸(MEF)光降解的影响机制.结果表明,甲芬那酸在不同浓度硝酸根溶液中的光解反应符合准一级动力学规律,其降解速率常数随硝酸根离子浓度增大而增大,当硝酸根离子浓度由0增至1 mmol·L-1时其速率常数由0.00627 min-1增至0.0232 min-1;以异丙醇为分子探针检测到羟基自由基存在于MEF光解过程中;光解过程中产生亚硝酸根,其浓度随着反应的进行而不断增大;碱性水环境对硝酸根敏化甲芬那酸的光解反应有利;碳酸盐、氯离子、三价铁对硝酸根敏化甲芬那酸光解产生抑制作用.采用UPLC/MS/MS对硝酸根敏化MEF光降解产物进行鉴定,并提出3条可能的光解路径.毒性研究表明,在硝酸根敏化甲芬那酸光降解过程中,生成了具有较甲芬那酸而言更高风险的中间产物.  相似文献   
4.
运用一步热聚合法成功制备出二维超薄g-C_3N_4(UCN)纳米片,通过透射电子显微镜、比表面测定仪、紫外可见漫反射光谱、荧光光谱对UCN的形貌及光学性能进行表征,并利用g-C_3N_4对水相中的双氯芬酸钠(DCF)进行了光催化降解实验.结果表明,UCN具有二维超薄纳米片结构,且具有较高的比表面积、较强的可见光吸收能力及空穴-电子转移能力.UCN的光催化活性优于块状g-C_3N_4,过硫酸盐(PDS)的加入对双氯芬酸钠的降解有促进作用,UCN/PDS体系中对双氯芬酸钠降解起主导作用的活性物种为O【math203z】,经过150 min的反应,双氯芬酸钠的矿化率达到78%.双氯芬酸钠在UCN/PDS体系下的光催化降解符合一级动力学规律和Langmuir-Hinshelwood模型,DCF的光催化降解在偏酸和偏碱性的情况下具有较快的反应速率.DCF在河水中的反应速率是超纯水中的3.4倍.循环实验表明,UCN具有很好的光催化稳定性.  相似文献   
5.
使用一种简单的搅拌焙烧方法成功制备了MoO_3/g-C_3N_4复合材料,通过SEM、TEM、XRD、FTIR、UV-vis和PL等技术对材料进行形貌结构和光学性能的表征.结果表明,MoO_3与g-C_3N_4成功复合,使g-C_3N_4吸收发生红移,扩大了g-C_3N_4的可见光吸收范围,有效地抑制了光生载流子的复合.以非甾体抗炎药萘普生(NPX)为目标污染物,对MoO_3/g-C_3N_4复合材料的光催化性能进行研究,实验表明光催化剂MoO_3/g-C_3N_4对萘普生的去除率是相同条件下纯g-C_3N_4的1.75倍.MoO_3负载量、pH值、催化剂MoO_3/g-C_3N_4的使用量和NPX的初始浓度等因素的研究表明,3%的MoO_3复合量和酸性条件更有利于NPX降解,加大MoO_3/g-C_3N_4的使用量和减少NPX的初始浓度也能加快NPX的降解速率.通过猝灭实验确定了单线态氧和超氧自由基是反应的主要活性物种,ESR测定单线态氧的存在验证了Z型MoO_3/g-C_3N_4降解NPX的机制.  相似文献   
6.
采用高温热解金属草酸盐的方法制备了介孔铁锰双金属氧化物(MFMBO),通过X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(HRTEM)和比表面测定仪等表征,证实合成的材料为类蠕虫状的介孔结构,比表面积为218.68 m~2·g~(-1).MFMBO对Pb~(2+)的吸附动力学符合准二级动力学方程,吸附等温曲线符合Langmuir模型,热力学参数表明对Pb~(2+)的吸附过程是非自发和吸热的.实验条件下最大吸附量为250mg·g~(-1),吸附性能优于大多无机吸附剂.傅里叶红外光谱(FTIR)和X射线光电子能谱(XPS)等分析结果表明MFMBO对Pb~(2+)的吸附机理主要为Pb~(2+)对MFMBO表面羟基中H~+的替换,从而形成内层表面络合物.  相似文献   
7.
以中压汞灯为光源,研究水环境中吲哚美辛(IDM)的紫外光降解机制.实验结果表明,IDM的光解反应符合准一级动力学规律,其降解速率常数随自身浓度的增大而减小,当IDM浓度由1 mg·L~(-1)增至12 mg·L~(-1)时,其速率常数由0.0148 min~(-1)减至0.00412 min~(-1).通过模型研究IDM的紫外光解机制时发现,其降解包括直接光解和自敏化光解,直接光解常数为0.0151 min~(-1).研究环境因子对IDM光解的影响时发现,碱性环境有利于IDM的降解,而溶解氧抑制IDM的光解,腐殖酸通过光掩蔽和自由基猝灭两个作用抑制IDM的光解,硝酸根通过接受光量子产生·OH促进IDM的降解,并通过竞争反应实验测得·OH稳态浓度为2.10×10~(-1)4mol·L~(-1),IDM与·OH的二级反应速率常数为9.86×109L·mol~(-1)·s~(-1).  相似文献   
8.
以二聚氰胺为前驱体合成光催化剂石墨相碳化氮(g-C_3N_4),通过透射电子显微镜(TEM)、X射线衍射(XRD)和紫外可见漫反射光谱(UV-vis DRS)等技术对g-C_3N_4材料进行形貌结构和光学性能的表征.实验过程中,以g-C_3N_4光催化降解磺胺二甲嘧啶(SMZ)中,加入过硫酸盐(PDS)联合效果的研究结果表明,PDS加快了g-C_3N_4对SMZ的光催化降解;通过荧光测试,表明了PDS使g-C_3N_4的光生空穴(h~+)与光生电子(e-)能够进行有效地分离,从而加强其光催化性能;实验同时研究了PDS/g-C_3N_4体系对磺胺二甲嘧啶(SMZ)光催化降解的影响机制.研究表明,SMZ的光催化降解反应符合准一级动力学规律;pH在酸性环境下有利于SMZ的降解;使用草酸钠作为光生空穴分子捕获剂,检测到h~+存在于PDS/g-C_3N_4光催化体系中,并计算得出h~+的贡献率为65.9%,表明h~+在降解中起到主要作用;TOC的检测表明,加入PDS有助于SMZ的矿化.  相似文献   
9.
研究了模拟太阳光照射下水环境中不同形态氮(NO_3~-、NO_2~-和NH_4~+)对酮洛芬(KET)光解的影响.结果表明,KET在平均波长(200~450nm)下量子产率Φo为0.14.NO_3~-浓度从0.01mmol/L-增至1.0mmol/L时,KET光解速率常数从0.0109降至0.0085;NO_2~-浓度从0.01mmol/L增至1.0mmol/L时,KET光解速率常数从0.0095降至0.0069,NH_4~+对KET的光解基本无影响.NO_3~-的光掩蔽现象对KET光解的影响起主要作用;NO_2~-则通过光掩蔽现象和羟基自由基猝灭来抑制KET的光解.同时研究了当水环境中pE值发生变化而引起水中无机氮形态转化时,不同形态氮共存对KET光解的复合影响,随着pE值的增大,KET的光解速率先减小后增大;当NO_2~-和NH_4~+共存时,两者对KET光解的影响存在拮抗作用,这一拮抗作用也存在于NO_2~-和NO_3~-之间.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号