首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   1篇
  国内免费   7篇
综合类   9篇
  2022年   1篇
  2020年   2篇
  2019年   2篇
  2017年   3篇
  2016年   1篇
排序方式: 共有9条查询结果,搜索用时 242 毫秒
1
1.
生物炭对塿土土壤温室气体及土壤理化性质的影响   总被引:23,自引:12,他引:11  
通过田间小区试验,分别向塿土土壤中添加0、20、40、60、80 t·hm~(-2)的苹果果树枝条生物炭后,分析了生物炭对土壤温度、土壤团聚体、NO_3~--N、NH_4~+-N、微生物量碳以及土壤温室气体排放的影响.结果表明,生物炭可以缓解土壤温度的变化,增加土壤大团聚体的数量,尤其是5 mm、5~2 mm和1~0.5 mm的团聚体数量.与对照相比,随着生物炭施用量的增加,土壤NO_3~--N、NH_4~+-N、微生物量碳分别增加了4.9%~33.9%、9.1%~41.1%和11.8%~38.5%.本研究中生物炭对土壤温室气排放的影响主要表现为:添加生物炭后,土壤CO_2的排放量以及CH_4的吸收汇分别增加了6.73%~23.35%和3.62%~14.17%;施用20 t·hm~(-2)和40 t·hm~(-2)的生物炭降低了土壤N_2O的排放和综合增温潜势(GWP),而当生物炭施用量大于等于60 t·hm~(-2)时反而增加了土壤N_2O的排放和综合增温潜势(GWP).说明生物炭作为一种土壤改良剂和碳减排剂,能够改善土壤质量,提高土壤肥力,提高农田土壤增汇减排的作用,此外,选择合适的生物炭施用量至关重要.  相似文献   
2.
土壤微生物代谢对土壤养分循环和生态系统的稳定至关重要.为明确施加生物炭对土壤微生物代谢养分限制和碳利用效率(carbon use efficiency, CUE)的长效影响机制,于2012年将果树树干、枝条生物炭(450℃、限氧条件下裂解)以不同用量(0、 20、 40、 60和80 t·hm~(-2))施入塿土,与耕层土壤(0~20cm)混匀,小麦玉米轮作7 a后,通过生态酶化学计量学对土壤微生物代谢养分限制特征进行了定量分析和比较.结果表明:①随生物炭施用量的增加,土壤含水量、有机碳、全氮、碳氮比、碳磷比和氮磷比显著提高,碳氮磷活性组分、微生物生物量碳氮磷和总磷未表现出明显的规律性,而5种胞外酶活性(β-1,4-葡萄糖苷酶、纤维素酶、亮氨酸氨基多肽酶、β-1,4-N-乙酰氨基葡萄糖苷酶和磷酸酶)显著降低.②所有处理土壤微生物均受磷限制;在施加生物炭各处理中,随施用量的增加微生物代谢碳和磷限制显著提高,微生物CUE显著降低;当生物炭施用量为20 t·hm~(-2)时,碳限制(0.625±0.022)和磷限制(62.153°±0.892°)最低,微生物CUE(0.511±0.007)最高.③偏最小二乘路径建模分析表明,土壤碳氮磷及其元素化学计量比对磷限制产生了直接的极显著正效应(P0.01),碳限制与磷限制呈正相关关系(R~2=0.242,P0.001),而碳磷限制又对CUE产生了极显著的负效应(P0.001).综上,过量施用生物炭使土壤元素化学计量失衡是导致土壤微生物代谢磷限制加剧的重要因素,继而诱导了微生物碳限制的增强和CUE的降低.当生物炭施加量为20 t·hm~(-2)时,微生物代谢所受碳磷限制最低,且具有最高的微生物CUE,对于调节土壤微生物代谢、维持生态功能和减少微生物二氧化碳排放最优.  相似文献   
3.
不同配比复合材料对农田镉污染土壤的修复效果   总被引:8,自引:6,他引:2  
陈树兰  许晨阳  耿增超  王强  祝乐  龚园  拓卫卫 《环境科学》2019,40(12):5531-5539
通过盆栽试验研究了3种不同配比复合材料SC(石灰+有机复混肥以2∶3配施)、LS(硫酸亚铁+石灰以1∶1配施)和LB(硫酸亚铁+生物炭以1∶1、1∶2、1∶3、1∶4和1∶5配施)在不同添加量下对土壤Cd的生物有效性、小麦各部位Cd累积分布及产量的影响.结果表明:①添加3种复合材料均显著降低了土壤有效态Cd含量,降幅分别为50. 2%~81. 8%(SC)、29. 4%~48. 1%(LS)和18. 7%~42. 2%(LB);添加3种复合材料显著提高了土壤pH值,增幅分别为1. 37~2. 28(SC)、0. 41~0. 86(LS)和0. 14~0. 17(LB)个单位.②Cd在小麦各部位的累积分布规律为根叶茎颖壳籽粒,小麦各部位对Cd的转运能力表现为根颖壳茎叶.③与对照相比,添加0. 67%的SC显著增产56. 4%,添加0. 67%的LS显著增产51. 2%;添加复合材料LB可显著提高小麦产量,增幅为39. 6%~51. 2%.④相关分析表明,土壤pH值与土壤有效态Cd、小麦各部位Cd含量呈显著负相关关系;土壤有效态Cd含量与小麦各部位Cd含量呈显著正相关,相关系数分别为0. 711(籽粒)、0. 817(颖壳)、0. 593(茎)、0. 630(叶)和0. 622(根);同时,小麦各部位Cd含量之间也存在显著或极显著正相关关系.⑤综合比较,添加0. 93%的SC使土壤pH增幅最大为2. 28个单位;土壤有效态Cd含量降幅最大为81. 8%.因此,添加0. 93%的SC最适用于农田Cd污染土壤的修复治理.  相似文献   
4.
生物炭对塿土土壤容重和团聚体的影响   总被引:19,自引:10,他引:9  
通过比较生物炭施入土壤2 a和5 a的试验结果,研究随年限的增长生物炭的添加对塿土容重和土壤团聚体含量及稳定性的影响.采用田间定位试验和室内分析,试验设生物炭用量为0 t·hm~(-2)(B0)、20 t·hm~(-2)(B20)、40 t·hm~(-2)(B40)、60t·hm~(-2)(B60)和80 t·hm~(-2)(B80)这5个处理,将果树树干、枝条生物炭(450℃、限氧条件下)施入土壤,与耕层土壤混匀.经过5 a,分3层测定0~30 cm土层(即0~10、10~20和20~30 cm)的土壤容重、团聚体及有机碳含量.结果表明:①生物炭施入土壤5 a与施入2 a的结果相比,其对0~10 cm和10~20 cm土层团聚体影响相对减弱,对20~30 cm土层土壤容重和团聚体的影响显著增强.②随着年限的增长,在0~10 cm土层,生物炭施用量为40 t·hm~(-2)时, 0. 25 mm团聚体的含量及团聚体稳定性显著增强,容重显著减小;在10~20 cm和20~30 cm土层,生物炭施用量为60~80 t·hm~(-2)时, 0. 25 mm团聚体的含量及团聚体稳定性显著增强,容重显著减小.③当生物炭施用量为60 t·hm~(-2)时,对土壤有机碳的增加效果表现最优.说明生物炭对土壤团聚体的影响是一个渐进的过程.生物炭施入土壤5 a,其对深层土壤的影响更为显著,20~30 cm土层的土壤容重显著降低, 0. 25 mm团聚体的含量及团聚体稳定性显著增强.从经济效益和改善效果综合考虑,在耕层土壤施入40~60 t·hm~(-2)的生物炭最适.  相似文献   
5.
生物炭对土CH4、N2O排放的影响   总被引:3,自引:0,他引:3  
为了探讨生物炭对土CH4、N2O排放的影响,采用田间小区试验,测定了生物炭不同添加量(0、20、40、60、80 t·hm-2)下冬小麦田CH4、N2O的吸收/排放通量、小麦产量、土壤有机碳、土壤含水率及不同土层土壤温度.结果表明,CH4、N2O的吸收/排放通量随生育期不同变化明显.添加生物炭后,CH4累积吸收量增加了12.88%~71.61%,当添加量≥ 40 t·hm-2时,增"汇"作用达到显著水平,且添加量为40 t·hm-2时CH4累积吸收量最高;N2O累积排放量和全球增温潜势与对照相比没有显著差异;温室气体强度降低了13.24%~22.14%.添加生物炭提高了冬小麦产量,增产幅度为1.72%~32.19%,当添加量 ≥ 40 t·hm-2时,麦田增产效果达到显著水平,40 t·hm-2生物炭为麦田增产的最适添加量.同时,添加生物炭显著提高了土壤有机碳和土壤含水率,与对照相比,分别增加了1.42~2.69倍、7.08%~11.96%.综合来看,试验土表现为CH4汇和N2O源的功能,40 t·hm-2是其适宜的生物炭添加量.  相似文献   
6.
纳米生物炭的制备方法比较及其特性研究   总被引:3,自引:0,他引:3  
本研究以常见农林废弃物—果木枝条、玉米秸秆和花生秸秆为原料,在350~550℃条件下热解制得五种本体生物炭;采用离心法、球磨法、球磨+离心法3种方法提取纳米生物炭,进而对本体生物炭和纳米生物炭的比表面积、元素含量、矿物组成和表面化学性质等进行比较,以探究物料来源、热解温度和制备方法对纳米生物炭性质及稳定性的影响.与本体生物炭相比,球磨法制得的纳米生物炭比表面积增大1.36~6.94倍,但产物未达到纳米颗粒级别,且在水体中稳定性较弱;球磨+离心法制得的纳米生物炭直径为70.06~103.43nm,在水体中稳定性强;离心法制备的纳米生物炭各项指标均不如其他两种方法.纳米生物炭的产率为2.27%~34.80%,且产率随温度的升高而降低.与本体生物炭相比,纳米生物炭含有更多的羟基等含氧官能团和更少的脂肪碳链.与果木枝条制备的纳米生物炭相比,玉米秸秆和花生秸秆来源的纳米生物炭产率高,但水稳性较差,易发生凝聚.果木枝条来源的纳米生物炭碳酸盐等碱性矿物含量丰富,且由于颗粒表面含氧官能团数量多而zeta电位绝对值高,悬液可以稳定分散.不同方法制备得到的纳米生物炭优缺点各异:球磨法制得的纳米生物炭比表面积更大;球磨+离心法制备的玉米和花生秸秆纳米生物炭的产率更高;低温热解果木炭提取的纳米生物炭水稳性更强.  相似文献   
7.
为确定生物炭对土壤呼吸速率以及土壤碳组分的影响,采用田间小区试验,以苹果果树枝条生物炭为试验材料,研究了添加0、20、40、60、80 t/hm2的苹果果树枝条生物炭后,小麦生态系统呼吸(Re)、土壤呼吸(Rs)、植物呼吸(Rp)、土壤TOC(总有机碳)、土壤POC(颗粒有机碳)、WSOC(土壤水溶性有机碳)和土壤AOC(易氧化有机碳)的变化以及各指标之间的相关性.结果表明,添加生物炭显著提高了小麦生态系统呼吸速率、土壤呼吸速率和植物呼吸速率,与对照相比分别增加了9.98%~27.57%、9.33%~19.47%和10.18%~30.14%,并且生物炭施用量为20和40 t/hm2时土壤呼吸速率显著高于其他两个处理,而对于小麦生态系统呼吸速率和植物呼吸速率来说,施用40 t/hm2生物炭时其值最高.对于土壤碳组分,施用生物炭显著提高了0~20 cm土层中土壤w(TOC)、w(POC)和w(AOC),并且土壤w(TOC)和w(POC)与生物炭施用量呈极显著正相关.对于WSOC而言,当生物炭施用量高于40 t/hm2时其值显著降低,与对照相比,0~10、>10~20和>20~30 cm三个土层中w(WSOC)分别降低了21.82%~28.37%、35.88%~36.58%和32.28%~44.07%.研究显示,适量施用生物炭能够提高土壤w(TOC)、w(POC)和w(AOC)而降低了w(WSOC),但同时也增加了小麦生态系统呼吸速率.   相似文献   
8.
生物炭作炭基肥缓释载体的能力与其理化性质密切相关,因此在制备炭基肥前有必要对不同原料和热解温度制备的生物炭的理化性质进行评价.以苹果枝条、棉秆和杜仲枝条为原料,通过生物质干馏设备在400、 500、 600和700℃热解温度下制备生物炭,并对生物炭的pH、比表面积及孔隙结构、表面官能团和矿物组成等理化性质进行表征和灰色关联度分析,结合生产成本评价生物炭用于炭基肥缓释载体的潜力.结果表明,3种原料制备的生物炭的产率均随热解温度的升高而降低,其中400℃制备的苹果枝条生物炭的产率最高(37.4%).所有生物炭的pH值均>10,表现出强碱性.在400~500℃热解温度范围内,苹果枝条、棉秆和杜仲枝条生物炭的比表面积和总孔容随温度的升高增大,最大比表面积分别为265.262 7、 107.449 1和316.185 4 m2·g-1;当热解温度>500℃时,比表面积和总孔容减小.FTIR和XRD图谱分析表明,所有生物炭具有丰富的芳香结构,其中苹果枝条和棉秆生物炭含有较多的矿物组分,杜仲枝条生物炭为非晶生物炭.灰色关联分析表明当热解温度为5...  相似文献   
9.
秦岭红桦林土壤细菌群落剖面分布特征及其影响因素   总被引:2,自引:0,他引:2  
研究秦岭辛家山林区红桦林细菌群落在土壤剖面上的分布状况,对评估土壤细菌在森林生态系统土壤肥力调节、碳氮循环等作用至关重要.采用Illumina MiSeq高通量测序技术对土壤细菌16S r DNA V3~V4可变区进行测序,结合相关生物信息学分析,初步探讨了红桦林0~10、10~20、20~40和40~60 cm这4个土壤层细菌群落丰富度、多样性指数和细菌群落组成及丰度变化.结果表明,在红桦林土壤剖面上,OTUs、Chao1指数、Shannon指数均在0~10 cm处达到最大值,分别为1 688、2 314、8.66,土层间差异不显著.4个土壤层的优势菌门均为酸杆菌门(Acidobacteria)、变形菌门(Proteobacteria),主要的优势菌属为Gp4、Gp6和Gp16.优势菌门的相对丰度在土层间并不相同,0~10 cm土壤层具有较高的变形菌门(Proteobacteria),其相对丰度为23.62%,而40~60 cm具有较高的酸杆菌门(Acidobacteria),相对丰度为62.88%.酸杆菌门(Acidobacteria)与全氮、土壤有机碳、C/N、可溶性有机碳显著相关,变形菌门(Proteobacteria)与土壤含水量、土壤有机碳、可溶性有机碳显著相关.经RDA分析证明,影响秦岭红桦林土壤剖面细菌群落分布的主要土壤因素是可溶性有机碳.这些研究结果表明在秦岭红桦林土壤4个土层均有较高的细菌多样性,为进一步认识森林土壤细菌多样性奠定了理论基础,在研究森林生态系统土壤剖面养分循环过程时应予以考虑.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号