首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   1篇
  国内免费   5篇
综合类   9篇
污染及防治   2篇
  2013年   2篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2006年   4篇
  2005年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
控制游离氨实现单级自养生物脱氮的研究   总被引:2,自引:1,他引:1  
通过实时调控SBR反应器内的游离氮浓度的控制策略,实现以亚硝化作用和厌氧氨氧化作用协同的单级自养生物脱氮工艺.实验分成亚硝酸菌富集和厌氧氨氧化菌混合接种2个阶段,SBR内的温度始终保持在(31±2)℃.亚硝酸菌富集阶段,pH值稳定在7.8左右,通过调节进水氩氮浓度(56~446 mg·L-1)实现FA浓度的变化,从而实...  相似文献   
2.
低曝气下PAC强化SBR工艺同步脱氮除磷   总被引:1,自引:0,他引:1  
采用序批式反应器(SBR)处理模拟生活污水,研究不同曝气量(30、24、18和12 L/h)下活性污泥同步脱氮除磷规律,并在最佳曝气量下,比较了粉末活性炭-序批式反应器(PAC-SBR)和SBR的脱氮除磷效率,分析了低曝气下PAC-SBR的运行特性和优越性。实验结果表明,当曝气量为24 L/h时,SBR内出水效果较好,其COD、TN和TP的平均去除率分别可以达到90.02%、81.13%和88.12%。在这个最佳曝气量下,PAC-SBR具有明显的优势,其COD、TN和TP的平均去除率均高于SBR,并且PAC-SBR具有较好的污泥沉降性能和较高的活性污泥浓度。在PAC-SBR中,活性污泥以PAC作为微生物载体强化了生物降解效果,并改善了低曝气下污泥絮体的结构,促使反应器内先后形成缺氧-厌氧-微氧/缺氧-缺氧的环境,利于同步硝化反硝化和反硝化聚磷,提高了PAC-SBR的同步脱氮除磷效率。  相似文献   
3.
用于分子生态学研究的堆肥DNA提取方法   总被引:25,自引:13,他引:12  
分子生态学为堆肥微生物的研究提供了新的技术手段,DNA的提取是该技术的基础,但由于腐殖酸类物质的污染,增加了堆肥微生物总DNA的提取难度.采用了3种不同的方法(溶菌酶法、超声波破碎法和蛋白酶K-CTAB法)从堆肥中提取微生物的总DNA,使用核酸和蛋白质分析仪检测后表明3种提取方法获得的DNA产量均较高;琼脂糖凝胶电泳结果表明其长度约为23 kb;使用细菌16S rRNA基因通用引物(27F和1 495R)对总DNA进行PCR扩增,都获得了几乎全长的16S rDNA序列(约1.5 kb);利用限制性内切酶(Hae Ⅲ和AluⅠ)对纯化后的PCR产物进行RFLP分析,结果表明3种方法提取的DNA反映了比较一致的微生物多样性.虽然3种方法各有优缺点,但其提取的DNA都可以用于堆肥微生物的分子生态学研究,可以根据实际需要选用某一种方法用于提取堆肥总DNA.  相似文献   
4.
线路板生产丝印区有机废气的净化   总被引:5,自引:2,他引:3  
针对电子线路板厂洁净房丝印区有机废气污染的问题,选择间歇式固定床活性炭吸附法净化有机废气的工艺流程,通过制冷能力和吸附量的估算,设计空塔气速为0 . 6m s,吸附剂为果壳活性炭,装填高度为1m ,分双层多个抽屉式填装,运行后,实际监测净化效果明显,苯、甲苯、二甲苯的净化效率分别为81 .5 9% ,83. 5 0 % ,85 . 4 3% ,换下的废活性炭经再生解吸后可循环使用。回收的有机溶剂掺在柴油中作为发电机的燃料。  相似文献   
5.
研究了SBR在不同pH值条件下处理模拟城市生活污水中的脱氮效果.结果表明,在曝气时间为4 h,沉淀静置时间为4h,进水COD浓度为250~300 mg.L-1,进水NH4+-N浓度30~40 mg.L-1时,R2(pH为8.0±0.2)出水氨氮浓度降到0~1 mg.L-1同时有大量的硝态氮生成,出水中硝态氮(NO3--N+NO2--N)的浓度基本在8~10 mg.L-1之间,TIN(TIN=NH4+-N+NO3--N+NO2--N)的去除率在70%左右.R1(pH为7.0±0.2)出水氨氮浓度降到0~5 mg.L-1,而硝态氮浓度在整个过程中基本保持不变且含量极低(1~2 mg.L-1),污泥中总氮含量较高且4 h好氧阶段呈先下降后上升的趋势,典型周期好氧开始时污泥中总氮含量为214 mg.g-1,好氧1 h时含量为210 mg.g-1,好氧结束时含量为215 mg.g-1,水相中TIN的去除率达到85%以上.说明在本研究特殊的工艺条件下,SBR能实现较高的生物脱氮效果,但氮的去除并不是通过传统的硝化反硝化途径实现,而是通过排除微生物超量吸收的富氮污泥来实现.  相似文献   
6.
室内空气高浓度苯系物的蚕豆根尖遗传毒性研究   总被引:6,自引:0,他引:6  
蚕豆根尖微核(micronucleus,MCN)检测技术是一项检测水环境致突性因素的成熟技术,该研究采用敏感的松滋青皮蚕豆为材料,在密闭容器中模拟室内空气的高浓度苯系物污染,对蚕豆根尖进行染毒,然后用显微镜观察蚕豆根尖细胞中的微核.通过对实验结果进行污染指数(PI)和t检验分析表明:在所有实验浓度下,苯、甲苯和二甲苯都对蚕豆根尖细胞产生了遗传毒害效应;对受试物质量浓度和微核率进行一元线性回归分析后得到线性方程,表明二者间存在线性关系.该实验结果还表明,利用蚕豆根尖微核检测技术检测室内空气中较高浓度的苯系物污染是完全可行的.   相似文献   
7.
基于ANN的SBBR-CRI处理模拟生活污水及其仿真研究   总被引:3,自引:1,他引:2       下载免费PDF全文
采用序批式生物膜反应器(SBBR)与人工快速渗滤系统(CRI)工艺结合对模拟生活污水进行处理,由于该工艺影响因素与出水参数的复杂非线性关系,利用人工神经网络(ANN)对SBBR-CRI处理生活污水的过程进行仿真模拟.在MATLAB语言环境下,以DO、淹没时间/落干时间、曝气时间/停曝时间、进水COD、进水NH4+-N、进水TP为输入因素,出水COD、NH4+-N、TN和TP为输出因素,构建具有自适应学习规则的人工神经网络.结合最优网络运行参数:隐含层节点数6,初始学习率0.13,动量因子0.6,训练次数6000次,对样本仿真学习,预测值与实际值拟合度较好,样本的绝对平均误差率在7.5%之内,均方根误差均在0.085之内.结果表明,当DO为2mg/L,曝气时间/停曝时间为2/1,淹没时间/落干时间为1/3时,NH4+-N去除率能达到98%以上,TN和TP去除率85%以上,COD去除率94%以上.通过权重分析,进水NH4+-N、DO和进水TP对出水参数影响较大.  相似文献   
8.
采用BBD(box—behnken design)法对微生物絮凝剂MBFGAl捕集25mg/L含铜模拟废水中cu(Ⅱ)的过程进行了优化,设定5个影响因子分别为pH值、MBFGAl投加量、CaCl,投加量、搅拌速度和搅拌时间,响应值为cu(II)的去除率,并利用傅里叶红外光谱仪对捕集机理进行了研究。结果表明,影响MBFGAI捕集Cu(Ⅱ)的显著性因素为MBFGAl投加量和搅拌速度;当pH为7.23,MBFGAl投加量为24.75mg/L,CaCl2投加量为29.25mg/L,搅拌速度为130.90r/min和搅拌时间为47.79S时,MBFGAl对Cu(Ⅱ)捕集的效果达到最佳,Cu(Ⅱ)的实测浓度为0.08mg/L,去除率达99.68%,捕集容量为303.43mg/g。最后结合FTIR图,对捕集机理进行了初步探讨,MBFGAI中起捕集作用的基团主要是羟基、羰基和乙酰基。研究表明,微生物絮凝剂MBFGAl对水中Cu(Ⅱ)具有良好的捕集效果,是一种很有潜力的环境友好型微生物重金属处理剂。  相似文献   
9.
序批式生物膜反应器(SBBR)处理高氨氮渗滤液的脱氮机理研究   总被引:28,自引:2,他引:28  
采用自主设计的SBBR反应器处理氨氮浓度含量较高的垃圾填埋场渗滤液并对其脱氮机理进行分析.在保持(32±0.4)℃的环境温度下,经过58 d的驯化和33 d的稳定,SBBR反应器的脱氮效率最高达到95%.实验结果表明,高频间歇式曝气方式在抑制了硝酸细菌的活性的同时也消除了亚硝酸盐浓度和pH大幅波动对亚硝酸细菌和厌氧氨氧化细菌活性的影响;在曝气阶段,溶解氧浓度被控制在1.2~1.4 mg·L-1,亚硝酸细菌成为主体细菌,亚硝酸盐积累;在缺氧阶段,随着溶解氧浓度迅速降低,厌氧氨氧化细菌成为优势菌种,曝气阶段积累的亚硝酸盐与氨氮同时被去除.  相似文献   
10.
采用Hummer方法制备了氧化石墨烯(GO),采用化学共沉淀法把铁氧化物纳米粒子覆盖在GO上制成磁性氧化石墨烯(MGO),并把MGO用作吸附剂去除水中阴离子染料刚果红.采用扫描电镜(SEM)、透射电镜(TEM)、Zeta电位仪和磁强计对MGO进行了表征.研究了吸附动力学,吸附等温线及初始pH值,离子强度对吸附的影响.考察了MGO对自来水中刚果红的去除效果.结果表明,GO具有片状的二维纳米结构,表面有许多的褶皱;当pH3.5,吸附剂表面带负电荷,等电点为3.5;MGO的饱和磁化强度为31.2emu/g,足够从水溶液中分离出来.刚果红的吸附符合准二级动力学模型,且在吸附时间为7h内基本达到吸附平衡.在超纯水中最大吸附容量高达140.6mg/g,且吸附量随pH值升高先增加再降低,当pH4~5达到最大值.MGO对自来水中刚果红的最大吸附容量为287.6 mg/g,为在超纯水中的2倍,表明MGO对刚果红具有很好的去除效果.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号