首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   6篇
  国内免费   2篇
综合类   12篇
污染及防治   2篇
评价与监测   3篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2014年   4篇
  2011年   3篇
  2010年   1篇
  2009年   2篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.
日益突出的臭氧(O_3)污染已成为继PM2. 5之后我国大气污染防治的又一艰巨任务。由于氮氧化物(NO_x)、挥发性有机物(VOCs)这2种前体物的减排难度较大,且与O_3浓度存在复杂的非线性关系,准确获取O_3及NO_x、VOCs的时空分布对制定有效的防控措施至关重要。基于卫星遥感可定量反演O_3及2种前体物的代表性物种——二氧化氮(NO_2)、甲醛(HCHO)及乙二醛(C_2H_2O_2)的时空分布信息。面向区域O_3污染分析和防控应用,综述了卫星遥感对O_3及NO_2、HCHO、C_2H_2O_2的探测能力,以及利用遥感手段分析区域O_3及其前体物的传输。进而从O_3与NO_x、VOCs关系的角度,分析了利用卫星反演的前体物表征O_3生成风险的可行性。最后对卫星在区域O_3及其前体物监测方面的前景趋势提出了思考。  相似文献   
2.
环境一号卫星在监测大气PM10中的应用   总被引:4,自引:1,他引:3       下载免费PDF全文
选择京津唐地区作为实验区,从环境一号卫星(HJ-1)的CCD数据出发,利用暗目标法反演陆地气溶胶,然后在对气溶胶光学厚度进行垂直订正和湿度校正的基础上,得到PM10的反演模型,进行PM10的反演实验.并利用中国环境监测总站的地面监测数据对结果进行了检验.结果表明,HJ-1的时空分辨率满足PM10周监测的需要,结果与地面数据有一定的相关性(相关系数为0.58),为提高PM10的反演精度还需结合更多的地面数据进行模型的修正.  相似文献   
3.
西安是空气污染监控和防治有代表性的西部大型城市。研究了西安市及周边地区上空气溶胶光学厚度与PM10浓度的关系模型。利用2011—2012年MODIS卫星气溶胶光学厚度(AOD)遥感产品,通过数据匹配,利用地面气象观测站点的能见度数据和相对湿度数据对AOD产品进行垂直标高订正和湿度订正,2项订正显著提高了AOD和地面PM10浓度的相关性,相关系数从0.36提高到0.65,按季节分类统计和订正春至冬四季的相关系数分别为0.57、0.71、0.62和0.87,夏季和冬季的订正更为有效,可用性更高,这可能由于受到不同季节气溶胶来源和特征的影响。为研究中国西部大型城市,特别是西安市空气环境监测和区域联防联控提供了一种有效方法。  相似文献   
4.
近年来,PM_(2.5)已成为中国大气污染的首要污染物,危害人体健康。为弥补地基监测站点在空间分布上的局限性,借助卫星遥感技术估算PM_(2.5)浓度已成为研究热点。文章总结了利用卫星估算PM_(2.5)浓度的各种研究方法,探讨了不同方法的优势和不足,指出不同方法对不同应用目的的选择性差异较大。提出,应针对不同应用目的选择相应的方法,从而取得满足各方面需求的研究成果,为未来PM_(2.5)浓度估算应用工作提供参考。  相似文献   
5.
利用吸湿增长光散射测量系统、黑碳仪和气相色谱质谱联用仪等仪器,于2019年7月15日~8月4日在北京地区开展了为期21d的大气气溶胶观测实验.观测期间北京市区于7月27日出现短暂的轻度污染,并在7月29日出现强降水天气.结果显示:北京市区夏季大气污染变化剧烈且短暂,大气气溶胶散射吸湿增长因子f(RH)呈现平滑连续的特点,并且降水会对f(RH)造成显著影响.7月27日PM2.5的平均质量浓度为(92.54±47.05)μg/m3;,表现出较为剧烈的污染变化.7月28~30日平均散射吸湿增长因子f(80%±1%)分别为(1.50±0.35),(1.43±0.36)和(1.48±0.25),反映了降水对于大气气溶胶的湿清除作用.最后利用实验数据估算粒径吸湿增长因子gf(RH),并建模研究f(RH)和gf(RH)的关系,模型精度R2最高可达0.698.  相似文献   
6.
利用地基观测结果和多源卫星遥感观测,结合气象数据及HYSPLIT4后向轨迹模式,对华北平原中部背景地区(河南省郑州市中牟县东南郊)冬季霾事件的污染物特征和形成过程进行分析.综合观测时间为2014年12月13日~2015年1月16日,共有5次霾过程,占观测总天数的82%.地面监测结果显示,不同的污染过程污染物浓度变化曲线相似,O_3浓度在清洁天浓度较高;NO_x、SO_2、PM10、PM_(2.5)呈较强正相关性,NO_x、SO_2与PM10相关系数0.64、0.57,与PM_(2.5)相关系数0.56、0.45;近地面污染物以细粒子污染物为主,其中又以气态污染物二次生成的细粒子为主.AMPLE地基激光雷达和CALIPSO数据表明,华北平原霾层中上部受浮尘影响,以粗粒子污染物为主.气象探空数据表明该地区冬季大气对流层稳定利于霾的维持,假相当位温垂直差、K指数、露点差与能见度相关系数分别为0.52、0.56和0.38.分析近地面风速风向对霾过程的影响表明,该地区冬季以南方向静小风为主,风速与能见度相关系数为0.32,PM_1受东北方向污染源影响,PM_(1~2.5)及PM_(2.5~10)受西北方向污染源影响;结合高空风场分析,霾过程1受西北浮尘影响,霾过程5受南来水汽影响.通过后向轨迹分析,该地区冬季的低空污染传输主要来自东北和西北方向,其中东北方向区域传输来自河北与山东,占来源比例的14%,近距离污染传输主要来自站点以西的郑州、洛阳,约占来源比例的33%.  相似文献   
7.
在我国长期稳定的甲醛观测站点十分缺失,卫星平台高时频、大面积覆盖等优势使得通过卫星遥感探测大气甲醛成为了一种重要的研究手段.本文讨论了现有载荷的反演理论和方法,分析了我国大气甲醛的研究现状及不足.简述了从20世纪至今可用于甲醛探测的主要载荷:GOME/ERS-2,SCIAMACHY/ENVISAT,OMI/Aura,GOME-2/MetOp-A(B),OMPS/Suomi-NPP,总结归纳了各个卫星载荷仪器的轨道信息、时间空间分辨率等相关参数,以及各个传感器在大气甲醛遥感反演中的可行性.由于卫星自上而下的观测方式与地基平台不同,其反演方法也有不同之处,因此本文针对卫星平台综合论述了两种甲醛反演算法:传统的差分吸收光谱法(DOAS)和针对于甲醛反演的一系列改进算法以及近几年提出的主成分分析法(PCA);另外,本文针对现有反演算法和时空分布在我国中东部地区的研究现状和不足进行了综合讨论,并给出了一定的改进策略.  相似文献   
8.
为分析灰霾期间单颗粒气溶胶化学组成和混合状态,于2014年12月9日—2015年1月10日,使用单颗粒气溶胶质谱仪(SPAMS)表征华北平原郑州市中牟县的气溶胶颗粒.结果表明:灰霾期(H1:20141213T19:00—20141215T10:00;H2:20150102T10:00—20150106T03:00)和清洁期(C1:20141215T18:00—20141217T18:00;C2:20141231T16:00—20150101T20:00)大气颗粒物种类相同,主要分为有机碳(OC)、元素碳(EC)、生物质燃烧颗粒(BB)、元素碳有机碳(ECOC)、钾二次颗粒(K-Secondary)、矿尘(Dust)以及重金属颗粒(HM)7类.C1时间段,ECOC颗粒占比最高,占总颗粒数的49.8%;其次是OC和EC颗粒物,二者分别占总颗粒数的16.5%和10.8%.H1时间段,K-Secondary颗粒的占比(31.3%)最高;其次是OC和EC颗粒,二者分别占总颗粒数的23.1%和20.2%.清洁期与灰霾期质谱差分结果表明,清洁期颗粒物中含有C3H+、C4H3+、C5H3+等有机碳碎片峰,而灰霾期颗粒物中NO3-、HSO4-、NO2-等组分的信号强度显著大于清洁期.混合状态分析表明,从清洁期到灰霾期的过程中,主要颗粒物与NO3-和HSO4-的混合程度显著增强.清洁期与灰霾期单颗粒化学组成与混合状态的对比分析表明,清洁期新鲜排放的含碳气溶胶在灰霾期不断老化,单颗粒中二次无机组分增加,气溶胶整体老化严重.此外,灰霾期(H2)EC颗粒占总颗粒数的比例增至18.1%,并且与NO3-、HSO4-二次组分的混合状态增强,使平均能见度降低为4.0 km.研究显示,郑州大气能见度主要受化学组分、颗粒物混合状态和污染物质量浓度的影响.   相似文献   
9.
利用最新的MODlS(中分辨率成像光谱仪)气溶胶光学厚度(AOD)反演算法,反演珠江三角洲及香港地区2008年高分辨率(1 km x1 km)AOD分布,并与AERONET观测数据进行了验证(r=0.917).分析了2008年珠江三角洲及香港地区5个站点地面监测PM10质量浓度与反演的AOD数据相关性.结果表明:两者直...  相似文献   
10.
卫星遥感监测近地表细颗粒物多元回归方法研究   总被引:4,自引:0,他引:4       下载免费PDF全文
对地基监测PM2.5和气象数据、MODISAOD卫星数据与NCEP FNL数据进行了处理分析,在与一元简单线性模型(模型1)进行对比的基础上,建立了适应于北京及其附近地区遥感监测近地面颗粒物(PM2.5)浓度的多元线性(模型2)和非线性(模型3)回归模型,并对模型进行了评价验证和遥感监测初步应用.结果表明:模型1,2,3分别能够解释PM2.5 32.5%,56.1%,62.7%的变异.反演的PM2.5浓度与站点监测值相关性分别为0.5488(R2=0.3012), 0.7449(R2=0.5549), 0.7431(R2=0.5523).对于站点监测PM2.5浓度63.1652μg/m3的均值,反演均方根误差RMSE分别为43.5562, 35.3321, 36.8450μg/m3.模型2和3中气象因子分别能够解释PM2.5 23.6%和12.6%的变异,说明了气象因子影响北京地区春季PM2.5-AOD关系的显著性.3种模型整体上都不同程度地存在着低值高估和高值低估的现象.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号