首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  国内免费   2篇
综合类   2篇
基础理论   2篇
污染及防治   1篇
评价与监测   1篇
  2018年   1篇
  2012年   1篇
  2011年   2篇
  2007年   1篇
  2006年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
This study investigates adsorption-desorption and the leaching potential of glyphosate and aminomethylphosphonic acid (AMPA) in control and amended—addition of cow dung or rice husk ash—acidic Malaysian soil with high oxide mineral content. The addition of cow dung or rice husk ash increased the adsorptive removal of AMPA. The isotherm data of glyphosate and AMPA best fitted the Freundlich model. The constant Kf for glyphosate was high in the control soil (544.873 mg g?1) followed by soil with cow dung (482.451 mg g?1) then soil with rice husk ash (418.539 mg g?1). However, for AMPA, soil with cow dung was high (166.636 mg g?1) followed by soil with rice husk ash (137.570 mg g?1) then the control soil (48.446 mg g?1). The 1/n values for both glyphosate and AMPA adsorptions were <?1 indicating their strong affinity for adsorbents. Desorption of both glyphosate and AMPA occurred only in the control soil. The compounds were not detected in soils with added cow dung or rice husk ash. The addition of cow dung or rice husk ash increased glyphosate mobility. However, ground water ubiquity scores for both control and amended soils were <?2.8. This indicated glyphosate is a transitional herbicide; therefore, its leaching potential in the soil is low, despite the addition of cow dung or rice husk ash. Addition of these wastes decreased the mobility and leaching potential of AMPA. The addition of cow dung or rice husk ash could be beneficial in increasing adsorption and enhancing degradation of these compounds.  相似文献   
2.
Fresh water, coupled with soil salinization in many areas has resulted in an increased need forscreening of salt tolerant turf grasses. Relative salinity tolerance of eightwarm season turfgrass species were examined in this study in sand culture. Grasses were grown in a glasshouse, irrigated with either distilled water or saline sea water adjusted to 24, 48 or 72 dSm-1. Salt tolerances of the grasses were assessed on the basis of their shoot and root growth, leaf firing and turf quality. Regression analysis indicated that Zoysiajaponica (Japanese lawn grass) (JG), Stenotaphrum secundatum (St. Augustine) (SA), Cynodon dactylon (satiri) (BS), Zoysia teneuifolia (Korean grass) (KG), Digitaria didactyla (Serangoon grass) (SG), Cynodon dactylon (Tifdwarf) (TD), Paspalum notatum (Bahia grass) (BG) and Axonopus compressus(Pearl blue) (PB) suffered a 50% shoot growth reduction at 36.0, 31.8, 30.9, 28.4, 26.4, 25.7, 20.0 and 18.6 dSm1 of salinity, respectively and a root growth reduction at44.9, 43.7, 33.4, 31.0, 29.5 27.5, 21.5 and 21.4 dSm- of salinity, respectively. Leaf firing and turf quality of the selected species, as a whole, were also found to be affected harmoniously with the change in root and shoot growth. On the basis of the experimental results the selected species were ranked for salinity tolerance as JG>SA>BS>KG>SG >TD>BG>PB.  相似文献   
3.
The study was attempted to produce activated carbons from palm oil mill effluent (POME) sludge. The adsorption capacity of the activated carbons produced was evaluated in aqueous solution of phenol. Two types of activation were followed, namely, thermal activation at 300, 500 and 800%, and physical activation at 150% (boiling treatment). A control (raw POME sludge) was used to compare the adsorption capacity of the activated carbons produced. The results indicated that the activation temperature of 800℃ showed maximum absorption capacity by the activated carbon (POME 800) in aqueous solution of phenol. Batch adsorption studies showed an equilibrium time of 6 h for the activated carbon of POME 800. It was observed that the adsorption capacity was higher at lower values ofpH (2--3) and higher value of initial concentration of phenol (200--300 mg/L), The equilibrium data were fitted by the Langmuir and Freundlich adsorption isotherms. The adsorption of phenol onto the activated carbon POME 800 was studied in terms of pseudo-first and second order kinetics to predict the rate constant and equilibrium capacity with the effect of initial phenol concentrations. The rate of adsorption was found to be better correlation for the pseudo-second order kinetics compared to the first order kinetics.  相似文献   
4.
Activated carbons derived from oil palm empty fruit bunches (EFB) were investigated to find the suitability of its application for removal of phenol in aqueous solution through adsorption process, Two types of activation namely; thermal activation at 300, 500 and 800℃and physical activation at 150℃ (boiling treatment) were used for the production of the activated carbons. A control (untreated EFB) was used to compare the adsorption capacity of the activated carbons produced from these processes. The results indicated that the activated carbon derived at the temperature of 800℃ showed maximum absorption capacity in the aqueous solution of phenol. Batch adsorption studies showed an equilibrium time of 6 h for the activated carbon at 800℃. It was observed that the adsorption capacity was higher at lower values of pH (2-3) and higher value of initial concentration of phenol (200-300 mg/L). The equilibrium data fitted better with the Freundlich adsorption isotherm compared to the Langmuir. Kinetic studies of phenol adsorption onto activated carbons were also studied to evaluate the adsorption rate. The estimated cost for production of activated carbon from EFB was shown in lower price (USD 0.50/kg of activated carbon) compared the activated carbon from other sources and processes.  相似文献   
5.
This study was carried out to determine the sorption-desorption, degradation and leaching of napropamide in selected Malaysian soils. The sorption capacities of the selected Malaysian soils for napropamide were the following in descending order: Linau > Teringkap > Gunung Berinchang > Jambu > Rudua > Baging soil. The results indicate that napropamide degradation decreased with increasing soil sorption capacity. Napropamide was leached out earlier in the Baging soil than the other soils. Overall, the application of napropamide in the selected Malaysian soils would not pose a threat to the environment except in soil with low organic matter and clay content and high hydraulic conductivity, such as the Baging soil.  相似文献   
6.
Use of phosphate-solubilizing bacteria (PSB) as inoculants has concurrently increased phosphorous uptake in plants and improved yields in several crop species. The ability of PSB to improve growth of aerobic rice (Oryza sativa L.) through enhanced phosphorus (P) uptake from Christmas island rock phosphate (RP) was studied in glasshouse experiments. Two isolated PSB strains; Bacillus spp. PSB9 and PSB16, were evaluated with RP treatments at 0, 30 and 60 kg ha(-1). Surface sterilized seeds of aerobic rice were planted in plastic pots containing 3 kg soil and the effect of treatments incorporated at planting were observed over 60 days of growth. The isolated PSB strains (PSB9 and PSB16) solubilized significantly high amounts of P (20.05-24.08 mg kg(-1)) compared to non-inoculated (19-23.10 mg kg(-1)) treatments. Significantly higher P solubilization (24.08 mg kg(-1)) and plant P uptake (5.31 mg plant(-1)) was observed with the PSB16 strain at the highest P level of 60 kg ha(-1). The higher amounts of soluble P in the soil solution increased P uptake in plants and resulted in higher plant biomass (21.48 g plant(-1)). PSB strains also increased plant height (80 cm) and improved root morphology in aerobic rice. The results showed that inoculation of aerobic rice with PSB improved phosphate solubilizing activity of incorporated RP.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号