首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
废物处理   8篇
综合类   2篇
基础理论   1篇
污染及防治   5篇
评价与监测   1篇
  2022年   4篇
  2021年   1篇
  2018年   3篇
  2016年   1篇
  2011年   2篇
  2006年   2篇
  2005年   2篇
  2003年   1篇
  1991年   1篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.
Geochemical and mineralogical changes were evaluated at a field Fe0-PRB at the Oak Ridge Y-12 site concerning operation performance during the treatment of U in high NO3- groundwater. In the 5-year study period, the Fe0 remained reactive as shown in pore-water monitoring data, where increases in pH and the removal of certain ionic species persisted. However, coring revealed varying degrees of cementation. After 3.8-year treatment, porosity reduction of up to 41.7% was obtained from mineralogical analysis on core samples collected at the upgradient gravel-Fe0 interface. Elsewhere, Fe0 filings were loose with some cementation. Fe0 corrosion and pore volume reduction at this site are more severe due to the presence of NO3- at a high level. Tracer tests indicate that hydraulic performance deteriorated: the flow distribution was heterogeneous and under the influence of interfacial cementation a large portion of water was diverted around the Fe0 and transported outside the PRB. Based on the equilibrium reductions of NO3- and SO4(2-) by Fe0 and mineral precipitation, geochemical modeling predicted a maximum of 49% porosity loss for 5 years of operation. Additionally, modeling showed a spatial distribution of mineral precipitate volumes, with the maximum advancing from the interface toward downgradient with time. This study suggests that water quality monitoring, coupled with hydraulic monitoring and geochemical modeling, can provide a low-cost method for assessing PRB performance.  相似文献   
2.
Geochemical and mineralogical changes were evaluated at a field Fe0-PRB at the Oak Ridge Y-12 site concerning operation performance during the treatment of U in high NO3- groundwater. In the 5-yr study period, the Fe0 remained reactive as shown in pore water monitoring data, where increases in pH and the removal of certain ionic species persisted. However, coring revealed varying degrees of cementation. After 3.8-yr treatment, porosity reduction of up to 41.7% was obtained from mineralogical analysis on core samples collected at the upgradient gravel-Fe0 interface. Elsewhere, Fe0 filings were loose with some cementation. Fe0 corrosion and pore volume reduction at this site are more severe due to the presence of NO3- at a high level. Tracer tests indicate that hydraulic performance deteriorated: the flow distribution was heterogeneous and under the influence of interfacial cementation a large portion of water was diverted around the Fe0 and transported outside the PRB. Based on the equilibrium reductions of NO3- and SO4(2-) by Fe0 and mineral precipitation, geochemical modeling predicted a maximum of 49% porosity loss for 5 yr of operation. Additionally, modeling showed a spatial distribution of mineral precipitate volumes, with the maximum advancing from the interface toward downgradient with time. This study suggests that water quality monitoring, coupled with hydraulic monitoring and geochemical modeling, can provide a low-cost method for assessing PRB performance.  相似文献   
3.
Three gaseous pollutants, carbon monoxide, nitrogen dioxide, and sulfur dioxide were studied in the Nakorn Sri Thammarat Province area (Thailand) during March-August 1987. Air samples were taken from 12 stations covering four districts, i.e., Tungsong, Pakpanang, Muang, and Kanoum. Five stations are located in areas of light traffic conditions and low human population and seven are in densely populated areas with heavy traffic conditions.In this study the concentrations of pollutants found were in the range of non-detectable-0.7 ppm for carbon monoxide, 0.6–7.4 pphm for nitrogen dioxide, and non-detectable-7.4 pphm for sulfur dioxide.  相似文献   
4.
As species we humans generate excessive amounts of waste and hence for sustainability we should explore innovative ways to recover them. The primary objective of this study is to demonstrate an efficient and optimum way to recover chromium and iron from chromite ore processing residues (COPR) for the production of chrome steel and stainless steel. In Hudson County, New Jersey, there are more than two million tons of leftover COPR. Part of COPR was used as fill materials for construction sites, which spread the problem to a larger area. With high solubility along with their toxicity leached chromate from COPR is threatening the environment as well as human health. In this research, COPR was thermally treated to recover iron with chromium by applying techniques used in steel manufacturing. An extensive experimental program was performed using a Thermo-Gravimetric Analyzer (TGA) and bench scale tests to thermally treat the processed chromium contaminated soils with carbon and sand at varying temperatures and under reducing environment. The optimum chemical composition of COPR and additives to be used in the melts were evaluated based upon the thermodynamic properties of the mixture to ensure good phase separation, least amounts of iron and chromium oxides in the slag and minimum variability of final product (steel or iron with chromium). The impact of other oxides on the steel making process was evaluated to minimize the adverse impact on the process. The research demonstrated the feasibility of recovering a valuable construction material (chrome steel) from a waste (COPR).  相似文献   
5.
Journal of Polymers and the Environment - In this study, solvent-cast polymeric films containing ionic liquid lidocaine/aspirin for transdermal patches were developed. Solvent-cast polymeric films...  相似文献   
6.
This research aimed to prepare the silver nanoparticles (AgNPs)-loaded antimicrobial wound dressing patch using ethyl cellulose as a matrix membrane and diethyl phthalate as a plasticizer. The polymer suspension was homogeneously mixed with plasticizer, and then added to the colloidal AgNPs suspension. This mixture was poured into Petri dish and subsequently dried in a hot air oven at 80?±?2 °C for 10 h. The minimum inhibition concentration of the colloidal AgNPs suspension was 2.5 µg/ml. The AgNPs-loaded antimicrobial wound dressing patch was evaluated for physical properties by differential scanning calorimeter, X-ray diffraction, scanning electron microscope, and in vitro study. The antimicrobial wound dressing patch did not exhibit any interaction between the matrix membrane and AgNPs. The AgNPs were evenly dispersed in the patch. The patch could control the release of silver at 102.98?±?4.11% over 12 h. Although the AgNPs-loaded antimicrobial wound dressing patches can be easily prepared by the simple method, in future studies antimicrobial wound dressing patch will be developed by employing different types of film forming agents.  相似文献   
7.
Journal of Polymers and the Environment - This research developed lidocaine transdermal patches which were composed of deproteinized natural rubber latex (DNRL), several types of gelatinized...  相似文献   
8.
Journal of Polymers and the Environment - The aim of this study was to investigate the feasibility of concentrated natural rubber latex (CNRL), a major polymer, blended with either...  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号