首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   15篇
  国内免费   28篇
综合类   52篇
基础理论   2篇
污染及防治   1篇
  2023年   2篇
  2022年   11篇
  2021年   6篇
  2020年   7篇
  2019年   7篇
  2018年   3篇
  2017年   2篇
  2016年   1篇
  2015年   3篇
  2014年   3篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
排序方式: 共有55条查询结果,搜索用时 93 毫秒
1.
苏南水库硅藻群落结构特征及其控制因素   总被引:11,自引:8,他引:3  
为了解我国东南湿润区丘陵山地型水库硅藻的群落结构特征和控制因素,于2015年6月硅藻水华敏感期对苏南地区18座水库的浮游植物群落结构和水质进行调查,分析了营养盐、水深、库容等因素与硅藻及其它浮游生物的关系.结果表明,硅藻达到轻度水华水平(硅藻细胞含量介于100~1 000万cells·L~(-1))的水库有10座,对供水和景观功能产生明显影响;苏南地区水库普遍处于中营养和富营养水平,总氮浓度普遍偏高,磷及营养状态指数与硅藻生物量的关系密切;苏南地区水库中的浮游植物在数量上以蓝藻门中的席藻为主,在生物量上则以硅藻门、绿藻门和蓝藻门为主,其中硅藻门浮游植物平均占总浮游植物生物量的46.8%,是浮游植物异常增殖的主要门类;硅藻门中,主要是针杆藻、小环藻、曲壳藻和直链藻这4个种属占优,特别是针杆藻和小环藻,平均占硅藻总生物量的51.6%和21.4%;较深的水体,利于硅藻成为主要优势藻门;较大的水库流域库容比和较高总磷水平会导致水库营养水平和叶绿素浓度增加,促进浮游植物从硅藻门向绿藻门、蓝藻门演替,增加藻类危害的风险.因此,对于该地区水库,需要加强流域管理,并且针对水库自身的特点,包括水深、流域库容比等,确定其特定的富营养化控制策略,从而减少硅藻等藻类水华发生的风险,提升水源地水质安全保障能力.  相似文献   
2.
反硝化作用是水生生态系统的主要脱氮过程,与蓝藻生长之间存在对氮素的竞争作用,然而气候变化背景下反硝化脱氮对蓝藻水华发生动态的影响仍不清楚.基于2017~2021年北太湖为期5 a的水质监测历史数据,结合不同温度下蓝藻生长和沉积物泥浆培养实验,探究了湖体反硝化脱氮与蓝藻水华之间的相互影响.监测数据表明,太湖水体藻类生物量(以Chla表示)高值主要出现在夏秋季节,而总氮浓度季节变化规律与藻类生物量完全相反,冬春季较高,夏秋季显著降低,溶解态无机氮主要以硝态氮为主,并且硝态氮浓度在夏秋季节几乎接近于零.总磷浓度与Chla浓度变化一致.蓝藻培养实验结果表明,20℃以下蓝藻不能大量生长繁殖.泥浆培养实验结果发现,太湖反硝化作用的最高温度阈值为25℃,在10~25℃之间反硝化潜力与温度呈现显著的线性关系(R2=0.99).反硝化作用发生的最高硝态氮浓度阈值为4 mg ·L-1,远高于太湖水体的硝态氮浓度,反硝化潜力最高达到(62.98±21.36)μmol ·(kg ·h)-1.太湖水体反硝化速率受到硝态氮浓度的限制,而气候变暖导致湖泊温度提前升高,会使蓝藻提前生长,蓝藻生长对硝态氮的同化吸收会和反硝化作用产生竞争,使得大量氮还未被反硝化作用脱除就被藻类吸收利用,从而加剧蓝藻水华暴发的态势.研究结果对于解释近年来气候变化背景下太湖蓝藻水华反弹的机制具有重要科学意义.  相似文献   
3.
铜绿微囊藻、斜生栅藻生长的磷营养动力学特征   总被引:12,自引:1,他引:12  
许海  杨林章  茅华  刘兆普 《生态环境》2006,15(5):921-924
在无磷培养基中添加不同质量浓度的磷,对经过磷饥饿的铜绿微囊藻Microcystisaeruginosa和斜生栅藻Scendesmusobliquus进行一次性培养,比较研究磷饥饿下两种藻对外源磷的生长反应,并应用Monod方程计算了两种藻的营养动力学参数(Umax、Ks)。结果表明,铜绿微囊藻现存量快速增加的磷质量浓度在0.020~0.200mg·L-1之间,比生长速率快速增长的磷质量浓度在0.00~0.200mg·L-1之间,斜生栅藻现存量快速增加的磷质量浓度在0.02~4.00mg·L-1之间,比生长速率快速增长的磷质量浓度在0.020~0.500mg·L-1之间。无论在现存量上还是在生长速率上,铜绿微囊藻适宜的磷质量浓度都比斜生栅藻的低。铜绿微囊藻的最大生长速率和半饱和常数分别为0.229/d、0.026mg·L-1;斜生栅藻的最大生长速率和半饱和常数分别为0.395/d、0.031mg·L-1。生长动力学参数表明:当磷缺乏的情况下,铜绿微囊藻容易形成优势,当磷丰富的情况下,斜生栅藻容易形成优势。  相似文献   
4.
为认知水源地型水库异味发生风险及其规律,本研究于异味风险高危期(夏季),对江苏17个省级水源地型水库开展了水质、浮游生物和异味物质状况调查.结果表明,本次调查的17个水库普遍存在富营养化程度偏高(如藻类生物量偏大和水体透明度偏低)的问题,约三分之一的水库出现部分水层异味物质2-甲基异莰醇(MIB)浓度超标,MIB平均浓度为(13. 7±20. 7) ng·L-1,表明江苏省水库型水源地普遍存在MIB风险;多个水库检出土臭素(GSM),但其浓度均没有超过10ng·L-1的饮用水标准浓度(最大浓度为4. 6 ng·L-1);同步水质调查及统计分析表明,MIB浓度和水体叶绿素a浓度、水体透明度、悬浮颗粒物浓度、富营养化指数等重要水质指标及浮游植物生物量(特别是蓝藻生物量)相关性显著(P 0. 05),其中MIB与叶绿素a、富营养化指数呈极显著的相关关系(P 0. 01).因此,水源地型水库的异味物质风险与水库的富营养化密切相关;实施营养盐外源输入削减、提高流域植被覆盖度、科学调控渔业养殖规模等水体富营养化控制措施是水库异味物质控制的关键.  相似文献   
5.
近年来,极端降雨事件在全球发生的强度和频率不断增加,这可能对大型深水水库水体有机碳的时空分布产生深远影响. 为探究强降雨事件对千岛湖有机碳的时空分布特征及影响机制,于2020年5—8月逐月采集了典型大型深水水库——千岛湖100个调查点位水样,分析了千岛湖夏季水体总有机碳(TOC)、溶解性有机碳(DOC)和颗粒有机碳(POC)浓度的时空分布特征和影响因素,重点探讨了强降水过程对有机碳浓度、通量和储量的影响. 结果表明:①2020年5—8月千岛湖TOC、DOC和POC浓度平均值分别为2.06、1.73 和0.33 mg/L,随着强降雨开始,5—7月TOC、DOC浓度呈逐渐上升趋势,而雨量急剧下降的8月(几乎无雨),浓度也随之显著下降;水平分布上,5—7月有机碳浓度高值在全库的分布范围逐渐扩大,整体具有河流区到湖泊区逐渐降低趋势. ②新安江入库碳通量(FTOC、FDOC、FPOC)约占全库25条主要河流总入库碳通量的69%,降雨期间5—7月总入库FTOC分别是8月的11、36和41倍;5—8月有机碳储量(RTOC、RDOC、RPOC)平均值分别为44 611、38 452和6 159 t,6月、7月的总入库碳通量均占当月全库水体碳储量的1/5,所占比例分别8月的35和28倍. ③DOC和POC浓度与叶绿素a(Chla)、悬浮颗粒物(SS)、有机悬浮颗粒物(OSS)、无机悬浮颗粒物(ISS)、CODMn和TP浓度均呈极显著(P<0.01)正相关,与透明度(SD)呈极显著(P<0.01)负相关. 研究显示:千岛湖有机碳主要受浮游植物内源生产过程以及外源输入过程共同决定,而这两个过程受水文气象因素的综合影响,强降雨过程是千岛湖有机碳时空变化的关键驱动力;强降雨也是有机碳通量升高的关键控制因子,并且高入库碳通量会对全库水体碳储量产生强烈冲击.   相似文献   
6.
为了探讨太湖春季藻类生长的磷营养盐阈值,采用原位营养盐富集生物模拟实验,研究了太湖梅梁湾浮游植物对不同浓度无机磷(PO43--P)的生长响应.结果表明:外源磷添加能显著的促进浮游植物生长,但存在阈值.当磷浓度低于0.02mg/L时,藻类生长速率和生物量是可控的,当磷浓度高于0.02mg/L时,生长速率和生物量没有变化,因此春季藻类生长的无机磷阈值为0.02mg/L,相当于总磷阈值为0.059mg/L.太湖目前只有部分湖区总磷年平均浓度处于总磷阈值以下,控制流域的磷负荷,降低太湖的浮游植物生物量将是一个长期过程.  相似文献   
7.
太湖夏季水体中尿素的来源探析   总被引:6,自引:2,他引:4  
为研究尿素氮在太湖生态系统中的作用,于夏季采集湖体及环湖河道水样进行尿素及不同形态氮素含量分析.通过河道及湖体的82个调查点位生态指标的同步分析,得出以下结果:①太湖尿素氮含量变化范围为0.011~0.161 mg·L-1,总体呈现出西北高,东南低的变化趋势,与流域主要污染源分布有关;②太湖水体溶解性氮以无机氮库为主,铵硝比为5∶1,其中尿素氮占总氮、溶解性总氮、溶解性有机氮和生物可利用氮的平均质量分数分别为2.28%、5.91%、15.86%、6.22%,生态作用不容忽视;③环湖河道的尿素氮含量比湖体高出一倍,出湖河道尿素氮含量还略高于入湖河道;④太湖尿素氮与其他形式氮之间可能存在彼此转换关系,尿素氮含量与高锰酸盐指数、不同形态氮含量均呈显著正相关关系,与溶解氧呈显著负相关关系;湖体的尿素氮含量与叶绿素a含量呈弱正相关,与底栖生物、浮游动物种群的空间分布有密切联系.本研究表明太湖水体中尿素氮可能是湖体有机、无机态氮转化的桥梁,是湖体自身氮素循环快慢的标志,氮的循环速率控制尿素氮含量,高氮(特别是有机态氮)含量及低溶解氧条件是尿素升高的前提.太湖湖体尿素含量受外源输入和内源转化的双重影响.  相似文献   
8.
沉积物有效态磷对湖库富营养化的指示及适用性   总被引:1,自引:1,他引:0  
为探究不同类型湖库沉积物有效态磷对富营养化的指示意义及适用范围,选取了12个不同水深、不同换水周期的湖泊和水库进行4季度的水样、沉积物样品采集,以SMT分级方法提取的氢氧化钠磷(Na OH-P)作为沉积物有效态磷,分析了湖库中沉积物和水相磷含量之间的关系.结果表明,12个湖库的沉积物和水相磷含量差别大,沉积物Na OH-P含量范围为86~584 mg·kg-1(均值263 mg·kg-1),总磷含量225~760 mg·kg-1(均值502 mg·kg-1);水体总磷含量范围为0. 02~0. 35mg·L-1(均值0. 11 mg·L-1); 12个湖库的水体叶绿素a含量差异也很大,分布范围为3~349μg·L-1(均值51μg·L-1);沉积物与对应的水相各形态磷含量之间的相关分析发现,沉积物有效态磷与水相磷含量之间的相关性高于沉积物总磷,Na OHP比总磷能更好地反映湖库的富营养化状态,然而只有在换水慢的浅水湖库中,这种沉积物Na OH-P与水相磷的相关性才达到显著水平,表明"换水周期"和"水体深度"是影响沉积物Na OH-P与水相磷含量相关关系的两个关键因子:在换水快或是深水的湖库中,即使沉积物有效态磷含量较高,但是受多种因素影响,沉积物Na OH-P与水相磷含量的相关关系可能并不显著,而在换水慢的浅水湖库中,沉积物作为源和汇频繁与水体磷进行交换,尤其是在夏季藻类暴发时期,对水相磷升高贡献大,成为该类水体富营养化问题易发生、难治理的潜在缓冲因子.  相似文献   
9.
为分析降雨入流影响下水库悬浮颗粒物的时空分布及沉降特征,在华东地区最大水库新安江水库(千岛湖)的河流区、过渡区和湖泊区(分别对应街口、小金山和大坝这3个水质断面)布设水体沉降物自动捕获器和水质高频自动监测浮标,结合定期水样采集分析,开展了为期1 a的水体颗粒物沉降通量及其营养盐效应观测研究.结果发现,水库水体浊度、悬浮颗粒物浓度(SS)、颗粒物沉降通量与降雨量、入库流量极显著相关(P0.01),其中浊度与SS的相关性最好(R~2=0.86);在降雨较多的春夏季,SS空间差异明显(河流区过渡区湖泊区),而秋冬空间差异不大;颗粒物沉降通量具有明显的时空异质性,空间上河流区过渡区湖泊区[分别为27.82、 4.34和0.26 g·(m~2·d)~(-1)],时间上春夏季秋冬季;结合全湖60个点位四季悬浮物浓度调查估算,全库颗粒物沉降通量为2.57×10~6 t·a~(-1),其中春夏季沉降通量高于秋冬季;街口、小金山和大坝捕获沉降物中颗粒态氮含量(PN)分别为6 812、 15 886和21 986 mg·kg~(-1),磷含量(PP)分别为2 545、 3 269和3 077 mg·kg~(-1),自上游向下递增.统计分析表明,中雨以上降雨过程与河流区浊度增量呈指数相关(R~2=0.81),持续强降雨则对浊度有累加效应,但对过渡区影响不大;SS浓度自河流入库区至下游大坝随距离增加呈较好的指数下降特征(R~2=0.84),降雨较多的春夏季更为明显.结果还表明,新安江水库年均库容淤损率为0.07%,与全国其它大型水库相比较低,但是坝前沉降物营养盐含量较高,具有一定的内源释放风险;管理上应加强流域水土保持治理,降低降雨冲刷对水质的影响;同时关注坝前高营养沉积物的内源释放对水质的影响.  相似文献   
10.
水库库尾区的水环境多变,是水库生态系统突变的重要策源地.为探究大型水库水源地水环境演变特征及其突变的促发机制,以新安江水库为例,通过库尾河口断面18个月水质浮标的高频记录及3 d一次的藻类群落结构人工鉴定数据等,分析了气象水文过程影响下的水库库尾区的水温、溶解氧、浊度及营养盐等环境指标及藻类群落结构的高频变化特征,揭示了降雨、入流及季节温度变化等关键气象水文过程对水库水质及藻类群落结构的影响机制.结果表明:①在27 m深的河流入库区的水体温度和溶解氧存在明显的季节分层,相应水体藻类叶绿素a和营养盐等指标也同步发生分层,水温分层从气温达到14℃以上的3月中旬开始,至气温降至24℃后的10月中旬结束,期间较大降雨和入流多次破坏水温分层;②河道入库区水体氮、磷等营养盐变幅大,总磷浓度变幅为0. 011~0. 188 mg·L~(-1)之间,总氮浓度变幅为0. 75~2. 76 mg·L~(-1)之间,总磷和总氮中的溶解态占比分别为56%及88%,降雨入流对水体营养盐浓度影响巨大,3 d的累积降雨与水体氮、磷浓度显著正相关,3~6月(雨季)的营养盐含量明显高于其他月份(P 0. 001),藻类的季节性增殖反过来也会影响水体总磷浓度;③藻类群落结构及其优势属呈现明显的季节变化,在总体硅藻门类占优的背景下,蓝藻、绿藻、隐藻等在不同季节形成明显峰值,蓝藻在7~10月的夏秋季形成明显的生物量峰值,其峰值形成原因除了高温之外,还与暴雨入流有关.蓝藻主要优势属为束丝藻属(Aphanizomenon spp.)、微囊藻(Microcystis spp.)及颤藻(Oscillatoria spp.)等,绿藻峰值与蓝藻基本同步,优势属为盘星藻属(Pediastrum spp.)和新月藻属(Closterium spp.),隐藻在3~5月形成峰值,优势属为隐藻属(Cryptomonas spp.),硅藻门中的优势属分别为脆杆藻属(Fragilaria spp.)、小环藻属(Cyclotella spp.)、针杆藻属(Synedra spp.)及直链藻属(Melosira spp.)等;④入库流量、温度、水位、透明度、总氮、总磷及氮磷比等均为影响藻类优势属演替的主要因子,秋冬季节的控制因子为气象水文条件,而夏秋季节则受气象水文及营养盐的共同控制.本研究表明强降雨过程能对水库库尾区水环境及水生态系统结构产生巨大冲击,是水库藻类水华发生的可能诱发因子,通过对该过程的规律认识及关键指标监测,能够为水库水源地水质风险提供预警信息.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号