首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   17篇
  国内免费   18篇
安全科学   2篇
综合类   38篇
基础理论   8篇
污染及防治   6篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2014年   3篇
  2013年   2篇
  2012年   7篇
  2011年   2篇
  2010年   3篇
  2009年   6篇
  2008年   2篇
  2007年   9篇
  2006年   11篇
  2005年   2篇
排序方式: 共有54条查询结果,搜索用时 15 毫秒
1.
为量化评价冲击地压风险,运用灰色关联(GRA)和集对分析(SPA)相关理论,构建基于GRA-SPA的熵权(EW)多属性决策模型。将各指标与危险等级通过建立集对,确定联系式,计算绝对关联度及综合联系度;采用EW法确定各指标权重,构建最佳和最差方案同一度矩阵,得到综合评价集,确定评判等级;选取某典型煤矿的5个工作面,评价各工作面的冲击地压风险。结果表明:该模型综合考虑评价对象各指标因子的同一性、差异性和对立性,将联系度系数量化,并通过EW多属性决策凸显评价对象的差异性。  相似文献   
2.
张再利  况群  贾晓珊 《生态环境》2010,19(12):2973-2977
以花生壳为生物吸附剂,通过序批式实验研究了吸附剂投量、吸附时间、金属离子初始质量浓度、吸附温度对吸附金属离子的影响,探讨了花生壳吸附的动力学及热力学特性。结果表明,准二级动力学方程能很好地描述花生壳对Pb^2+、Cu^2+、Cr^3+、Cd^2+、Ni^2+的吸附过程。Langmuir模型和Freundlich模型均能较好地描述花生壳对5种重金属离子的等温吸附过程,而Langmuir模型拟合的线性更好。Pb2+、Cu2+、Cr3+、Cd2+、Ni2+5种金属离子的最大吸附量分别是32.25、7.09、3.82、2.95、2.22 mg.g-1,花生壳可用于处理低质量浓度多种重金属混合的废水。热力学研究表明,花生壳对5种金属离子的吸附具有自发、吸热和熵增的特性。  相似文献   
3.
1,2,4-三氯苯对铜钱草染毒的毒性响应及其机理   总被引:1,自引:0,他引:1  
以水培铜钱草为材料,研究1,2,4-三氯苯(1,2,4-TCB)染毒引起植株叶绿素、类胡萝卜素和可溶性蛋白含量等生理指标的毒性响应,并从叶片丙二醛(MDA)含量及各种抗氧化酶(超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和过氧化物酶(POD))的改变探讨了1,2,4-TCB的毒性作用机理.结果表明,1,2,4-TCB(5、10 mg.L-1)处理后,铜钱草叶片各种生理代谢指标与1,2,4-TCB处理之间呈现一定浓度-效应和时间-效应关系,但与对照组间无显著的统计学差异.叶绿素含量、叶绿素a/b和可溶性蛋白均随着1,2,4-TCB处理时间延长先升高后降低;MDA含量随处理时间延长先升高后降低,随浓度增加而增加;SOD和POD活性随处理时间和浓度增加先升高后降低;CAT活性变化不明显.在10 mg.L-11,2,4-TCB处理4—6 d时,各种抗氧化酶活性均达到最大.高浓度1,2,4-TCB(15、20 mg.L-1)处理铜钱草的抗氧化酶活性与对照组相比,均显著降低,且各处理组间也呈现统计学差异.  相似文献   
4.
厌氧氨氧化微生物的吸附、包埋固定化效果初探   总被引:6,自引:0,他引:6       下载免费PDF全文
以活性炭、陶瓷生化环、陶瓷生化球、珊瑚砂、火山石和生化棉为吸附固定化载体,以海藻酸钠(SA)和聚乙烯醇(PVA)制成的SA、PVA、PVA-SA和PVA-SA-活性炭小球为包埋固定化载体,研究了厌氧氨氧化微生物固定化的脱氮效果.结果表明,吸附固定化的大部分处理和包埋固定化的部分处理均能维持较高的厌氧氨氧化活性.吸附固定化脱氮效率优于包埋固定化,其中,活性炭吸附固定化脱氮效果最好,初期可以提高活性达30%以上.通过对活性炭吸附固定化的中长期连续运行监测发现,活性炭固定化第6次反应过程的厌氧氨氧化活性是对照的3.5倍.因此,活性炭吸附固定化还具有稳定持续的中长期效应,不失为一条有效提高厌氧氨氧化活性的固定化途径.  相似文献   
5.
厌氧氨氧化微生物在有机碳源条件下的代谢特性   总被引:8,自引:0,他引:8       下载免费PDF全文
通过多系列血清瓶实验并结合吉布斯自由能量分析探讨了厌氧氨氧化微生物在有机碳源条件下的代谢特性.实验结果表明:在葡萄糖作为有机碳源的条件下,低浓度的葡萄糖 (0.5 mmol·L-1) 能够促进厌氧氨氧化反应的速率,高浓度的葡萄糖 (≥1 mmol·L-1) 抑制了厌氧氨氧化活性;厌氧氨氧化微生物不仅具有厌氧氨氧化的代谢特性,还具有反硝化和硫酸盐还原的代谢能力.吉布斯自由能量分析表明: 在低浓度葡萄糖条件下,尽管最初厌氧氨氧化途径具有优势,但随后与反硝化途径展开竞争并处于劣势;在高浓度葡萄糖条件下,与厌氧氨氧化途径相比,反硝化途径完全占据优势;硫酸盐还原途径与厌氧氨氧化和反硝化途径相比不具有能量优势,只能发生在这两个途径之后.  相似文献   
6.
针对首次分离得到的一株具有同步脱氮除磷新功能的热带假丝酵母(Candida tropicalis) PNY2013,通过生理及动力学特征,连续流运行操作及其在含糖类工业废水中的应用3个环节,探讨了不同碳源模式下PNY2013同步脱氮除磷的特性.结果表明:PNY2013以葡萄糖、乙醇及乙酸为唯一碳源时均生长良好,其最大比增长速率μmax分别为0.1327、0.1252及0.1115 h-1,其同步脱氮除磷率分别可达100%、80%、100%(NH4+-N)及93%、95%、98%(PO43--P).3种碳源下PNY2013同步脱氮除磷的最佳条件基本接近为:温度30℃,pH=8.0,溶解氧0~2 mg·L-1,C/N=200∶5左右.PNY2013同步脱氮除磷的长期连续运行条件下的实验进一步表明,以葡萄糖为碳源条件下,进水NH4+-N及PO43--P浓度分别达400及80 mg·L-1时,两者去除率均接近100%.与这种超强能力相比,以乙醇及乙酸为碳源条件下,进水NH4+-N及PO43--P浓度分别达100及20 mg·L-1时,两者的去除率也可达60%~80%(NH4+-N)及40%(PO43--P),显示出相当的同步脱氮除磷能力.在以模拟制糖废水、淀粉加工废水、啤酒废水、味精废水这4种典型含糖工业废水为碳源条件下,除淀粉加工废水外PNY2013均能有效去除COD、NH4+-N和PO43--P,其中,制糖、啤酒、制药废水中的COD去除率分别可达40%、89%、96%,NH4+-N去除率分别为85%、94%、76%,PO43--P去除率均为90%.即使在40000 mg·L-1(制糖)及12500 mg·L-1(啤酒)的高COD条件下,PNY2013也均具有稳定的NH4+-N和PO43--P去除效果,显示出良好的同步脱氮除磷应用前景.  相似文献   
7.
采用直接吸入染毒法,对SO2吸入大鼠的肺泡巨噬细胞(AM)进行提取,测定了大鼠吸入SO2后AM细胞膜表层和疏水区膜脂流动性、ATP酶、超氧化物歧化酶(SOD)活性以及细胞膜脂质过氧化程度.结果表明,AM细胞膜脂荧光偏振度升高,细胞膜疏水区和表层膜脂流动性均显著降低;AM细胞膜结合酶ATPase活性与SO2浓度呈现显著负相关性;AM细胞膜SOD活性下降,脂质过氧化水平升高各项指标与SO2浓度之间均呈现一定的浓度-效应关系.  相似文献   
8.
采用UV、O3、UV/O3高级氧化法对水中六氯苯(HCB)的降解效果及机理进行了研究.结果表明, UV本身对HCB的去除贡献率不大, HCB可被O3、UV/03快速降解,即UV相似文献   
9.
珠江口水、沉积物及水生动物中氯苯类有机物的含量及分布   总被引:13,自引:0,他引:13  
对珠江口水、沉积物及水生动物体内氯苯类有机物(CBs)的污染现状进行了调查,并对该类污染物在水体多介质体系中的转移分配规律进行了初步研究1.结果表明,珠江口表层水中CBs的总浓度为16.44~963.20ng·L-,DCBs(二氯苯)对污染的贡献较为突出,占74.4%;表层沉积物(干重)中CBs总含量为7.83~40.09 ng·g-1,DCBs、TCBs(三氯苯)、TeCBs(四氯苯)、PeCB(五氯苯)和HCB(六氯苯)分别占总量的71.4%、11.1%、13.0%、1.2%、3.6%;水生动物中贝类的CBs平均含量是38873.0ng·g-1、鱼类为2360.3ng·g-1、虾类则为565.0ng·g-1,DCBs和TeCBs是水生动物体内的主要污染物.CBs在水、沉积物及生物体之间存在明显的富集和放大作用.  相似文献   
10.
以水草和鱼样品为研究对象,采用超声波法提取生物样品中的氯苯类化合物(CBS)并用气相色谱进行定性和定量分析.结果表明:用超声波提取生物样品中CBS的最佳提取溶剂为正己烷,功率为25W,提取时间为20 min.植物和动物样品中CBS的提取方法稍有不同.在最佳提取条件下,鱼样中的平均加标回收率为75.2%~91.6%,水草中的平均加标回收率为88.2%~94.3%.另外,要根据污染物的检出限,确定生物样品中污染物提取的浓缩倍数.结论:用超声波法提取生物样品中的CBs的方法是可行的.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号