首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   4篇
  国内免费   4篇
综合类   12篇
基础理论   2篇
  2023年   3篇
  2022年   1篇
  2021年   1篇
  2019年   3篇
  2018年   1篇
  2017年   2篇
  2014年   2篇
  2013年   1篇
排序方式: 共有14条查询结果,搜索用时 46 毫秒
1.
为了研究清洁取暖措施对保定市PM2.5中碳质气溶胶浓度和来源的影响,于2014年和2019年冬季采暖期在保定市采集PM2.5样品,用DRI Model 2001A热光碳分析仪测定样品中OC和EC的浓度.结果表明,2014年采暖期PM2.5中ρ(OC)和ρ(EC)平均值分别为60.92μg·m-3和18.15μg·m-3,2019年采暖期PM2.5中ρ(OC)和ρ(EC)平均值分别为36.63μg·m-3和6.07μg·m-3,与2014年相比2019年OC、 EC浓度分别下降了39.87%和66.56%,EC下降幅度大于OC,且2019年气象条件与2014年相比更不利于污染物扩散.通过对OC和EC相关性分析和SOC估算,发现2014年和2019年保定市OC和EC相关性R2分别为0.874和0.811,表明保定市OC和EC具有较为一致的来源.2014年和2019年ρ(SOC)的平均值分别为16...  相似文献   
2.
为研究北京冬季重污染过程的污染特征及成因,采用边界层风场、温/湿场和气溶胶垂直探测等雷达综合遥测手段,对2018年3月北京两会期间的一次典型重污染过程,从边界层气象要素演变进行综合研究.结果表明:①整个污染过程历时7 d,轻度以上污染时数达118 h(占污染过程总小时数的69.8%),严重污染时数达16 h(占污染过程总小时数的9.5%),ρ(PM2.5)最高达333.5 μg/m3.②从气溶胶的垂直空间演变来看,重污染天气的形成,除受本地源排放积累的影响外,还存在北京南部和东部的外部污染传输.贴地或上部逆温的稳定温度层结基本上对应ρ(PM2.5)的累积过程,其中,重污染时段逆温维持达68 h,逆温层厚度为500~1 100 m,最大平均逆温强度为0.6℃/(100 m).大气边界层高度偏低(积累过程白天在1 000 m以下,夜间只有300~500 m),导致污染物持续积累.整个污染过程中,高湿时段引起PM2.5吸湿增长和转化加重了污染程度;近地层持续小风导致污染积累;西南、东或东南方向大风层(10 m/s左右)向低空下探,有利于污染的缓解;强西北风或北风作用,使污染得以清除.研究显示,污染过程与边界层气象要素的演变密切相关.   相似文献   
3.
统计分析2014~2017年北京城区霾污染发生情况,利用HYSPLIT模式对4年内气流来向进行聚类计算,识别区域内的主要污染传输通道和潜在污染源区分布及变化.结果显示,研究期间北京市城区空气质量状况整体呈改善趋势,灰霾时发生率从2014年的50.6%降至2017年33.7%,灰霾日数由165d降至78d,每年10月到次年采暖结束的3月灰霾发生较为集中.不同强度霾发生频率逐年下降,秋、冬季灰霾发生频率及污染强度均逐步降低.冀东南平原区、太行山东麓以及燕山南麓沿线为京津冀地区的3条主要污染传输通道,传输高度均在近地1000m内,期间通道轨迹对应北京城区PM2.5平均达124.1μg/m3,其出现频率在2014~2017年逐年减小,并且各年当中同类轨迹所对应的北京PM2.5均呈逐年下降趋势.北京城区PM2.5的主要潜在源区从华北平原和渤海天津港区域逐渐缩小至冀中南和鲁西北地区,且传输通道区域污染贡献率逐年降低,有利的天气形势和人为的区域减排是近年空气质量改善的2大主因.  相似文献   
4.
为了解春节期间烟花爆竹燃放对北京大气污染物和PM2.5中水溶性无机离子贡献的影响,采用浓度特征对比、相关性分析等方法,对2011年2月1日-3月1日期间的PM10、气态污染物、PM2.5中水溶性无机离子浓度等在线数据进行了分析.结果表明:烟花爆竹的燃放会在短时间内加重PM10颗粒物污染,集中燃放期(含除夕、春节、正月初五、元宵节)ρ(PM10)和φ(SO2)(分别为232μg/m3和40.2×10-9)是非集中燃放期(63μg/m3和16.0×10-9)的3.7和2.5倍,燃放烟花爆竹对ρ(PM10)和φ(SO2)的小时贡献率分别达到56.8%和35.6%;但对φ(CO)、φ(NO)、φ(NO2)无显著影响.而观测期间由其他因素导致的污染期ρ(PM10)和各气态污染物小时体积分数有所增加,分别是非集中燃放期的3.0~8.3倍.燃放烟花爆竹对PM2.5中ρ(Mg2+)、ρ(K+)、ρ(Cl-)的影响最大,分别为非集中燃放期的65.0、31.6、6.9倍,贡献率分别为88.6%、87.2%、65.8%. ρ(Mg2+)、ρ(K+)与ρ(Cl-)在集中燃放期表现出较高的相关性(R>0.9).污染期ρ(SO42-)、ρ(NO3-)、ρ(NH4+)明显升高,分别为非集中燃放期的3.8、16.4、8.3倍,同时高于集中燃放期(分别为2.7、2.5、2.1倍).集中燃放期PM2.5中主要以NH4HSO4、NH4NO3、KNO3、KCl、NH4Cl、MgCl2等形式存在.集中燃放期硫氧化物转化率(SOR)高于非集中燃放期和污染期,而氮氧化物转化率(NOR)则是污染期最高.研究显示,燃放烟花爆竹对ρ(PM10)及PM2.5中ρ(Mg2+)、ρ(K+)、ρ(Cl-)影响最大,污染期各离子浓度均有大幅升高,NOR在污染期的高值是导致ρ(NO3-)升高的重要原因.   相似文献   
5.
为研究北京冬季重污染过程的污染特征及成因,采用边界层风场、温/湿场和气溶胶垂直探测等雷达综合遥测手段,对2018年3月北京两会期间的一次典型重污染过程,从边界层气象要素演变进行综合研究.结果表明:①整个污染过程历时7 d,轻度以上污染时数达118 h (占污染过程总小时数的69. 8%),严重污染时数达16 h (占污染过程总小时数的9. 5%),ρ(PM_(2.5))最高达333. 5μg/m~3.②从气溶胶的垂直空间演变来看,重污染天气的形成,除受本地源排放积累的影响外,还存在北京南部和东部的外部污染传输.贴地或上部逆温的稳定温度层结基本上对应ρ(PM_(2.5))的累积过程,其中,重污染时段逆温维持达68 h,逆温层厚度为500~1 100 m,最大平均逆温强度为0. 6℃/(100 m).大气边界层高度偏低(积累过程白天在1 000 m以下,夜间只有300~500 m),导致污染物持续积累.整个污染过程中,高湿时段引起PM2. 5吸湿增长和转化加重了污染程度;近地层持续小风导致污染积累;西南、东或东南方向大风层(10 m/s左右)向低空下探,有利于污染的缓解;强西北风或北风作用,使污染得以清除.研究显示,污染过程与边界层气象要素的演变密切相关.  相似文献   
6.
从城市尺度空气质量模型和平流扩散理论出发,通过对气象要素归类,利用空气质量与各类气象条件对应排放源强表征量的关联,建立了气象要素变化对城市空气质量影响的评估方法.该方法考虑了包括风(风速和风向)、云量、太阳辐射强度、大气稳定度、混合层高度等基本气象要素,能定量有效评估长期气象要素变化对空气质量的改善幅度.该方法在河南省鹤壁市的应用表明,相对2020年,2021年PM2.5浓度下降7.2μg/m3,气象要素变化和人为减排分别下降0.4和6.8μg/m3,占改善浓度的5.6%和94.4%,人努力起到主导作用;从季度来看,大气污染防治工作使夏、秋、冬季PM2.5浓度均有所降低,其中冬季下降27.8μg/m3,减排措施贡献16.8μg/m3,人努力效果尤为显著.  相似文献   
7.
8.
北京2013年1月连续强霾过程的污染特征及成因分析   总被引:10,自引:0,他引:10       下载免费PDF全文
以北京市2013年1月份连续灰霾天气中10~16日的强霾污染过程为例,利用MPL-4B型IDS系列微脉冲激光雷达观测资料由Fernald算法反演得到此次污染过程中气溶胶垂直分布特性,结合地面气象条件和天气形势分析污染原因,并讨论与气溶胶地面监测数据的符合性.结果表明:此次连续强霾过程污染严重,观测时段内89.4%的时间出现霾,39.8%的污染时段达到重度霾级别,其中大气地表消光系数与PM2.5浓度变化呈显著线性相关关系,相关系数达0.95.研究过程内,大气边界层在91%的时段低于500m,平均仅为293m,低边界层抑制了污染物的有效扩散;近地面垂向各高度的消光系数持续达到1.5km-1以上,对比气溶胶退偏比发现城市上空的大气强消光为气溶胶颗粒物和大气水分共同导致;气溶胶光学厚度(AOD,532nm)较大,有83.6%的时段超过1,且受相对湿度影响较大,相对湿度偏小时段的AOD值主要为气溶胶颗粒贡献,相对湿度较大时段,细颗粒物吸湿增长导致AOD受大气水分干扰显著.连续静稳的天气形势和区域污染是导致此次强霾发生和持续的主要原因,高湿天气则加剧了灰霾状况.  相似文献   
9.
自2013年6月以来,利用Airmo VOC在线分析仪在北京市典型城区开展了环境空气中挥发性有机物(VOCs)的连续观测,选取2014年4个季节中各1个月的苯系物在线数据,分析了其浓度水平、变化特征、光化学反应活性,利用美国环保署(US EPA)提出的健康风险评价方法开展了有毒有害苯系物物种的健康风险评价,结合来源分析结果,明确北京市应重点控制的苯系物污染来源。研究区观测期间环境空气中16种苯系物的质量浓度为(22.64±16.83)μg·m-3,且具有秋季冬季春季夏季的特点,其中BTEX(苯、甲苯、乙苯和二甲苯)的质量浓度为(19.27±14.46)μg·m-3,占苯系物浓度水平的41.09%~95.16%。研究区观测期间苯系物质量浓度夜间高于日间,日变化呈V字形,在13:00—15:00时质量浓度低。16种苯系物的臭氧生成潜势(OFP)的范围为66.62~170.67μg·m-3,其中间+对二甲苯、甲苯和邻二甲苯的OFP值相对较大;二次有机气溶胶生成潜势(SOAFP)的范围为0.71~1.86μg·m-3,其中甲苯、间+对二甲苯和乙苯的SOAFP值相对较大。研究区观测期间6种苯系物(BTEX和苯乙烯)的危害指数在8.19E-03~5.01E-02之间,在4个季节中对暴露人群尚不存在非致癌性风险;而Ⅰ类致癌物质苯的风险值处于7.13E-08~8.13E-06之间,在夏、秋和冬季对研究区暴露人群的人体健康均存在潜在的致癌性风险。来源分析结果表明,研究区春、秋季苯系物主要来源于机动车尾气的排放,其中春季还受到溶剂等挥发的影响,夏、冬季苯系物则主要来自于燃煤源。  相似文献   
10.
北京地区灰霾污染特征   总被引:1,自引:0,他引:1  
灰霾天气能见度较低,除影响人们日常生产活动和交通运输外,空气中携带的有毒有害细粒子严重危害人们的生命健康。近几年,北京市加大治霾力度,虽取得一定成绩,但灰霾天气仍然频发。为进一步更好地治理北京灰霾,为制定政策提供依据,须了解北京地区灰霾污染特征,因此,对北京市2013年6月到2014年5月的气象观测数据和PM2.5质量浓度进行了统计分析。文章统计了不同强度灰霾的分布,分析了PM2.5质量浓度与能见度的相关关系,在此基础上,研究了PM2.5质量浓度影响能见度变化程度的分界点。研究结果表明:研究期间,北京地区出现灰霾时总计4572 h,发生频率为56.2%,灰霾日总计233 d,频率为64.4%,呈冬季〉春季〉夏季〉秋季;湿霾最易发生在夏季,干霾最易发生在冬季,分别占当季灰霾时的17.6%和59.0%;全年不同强度霾发生小时数呈现轻微霾〉重度霾〉轻度霾〉中度霾,其中,轻微霾时数1625 h,重度霾1163 h,轻度霾1101 h,中度霾683 h;研究期间PM2.5质量浓度呈夏季低冬季高的显著变化趋势,PM2.5日均质量浓度达一级空气质量标准59 d,达二级标准159 d,达标率分别为17.7%和47.74%;PM2.5小时质量浓度与能见度呈负相关性较高的幂函数关系(置信度取99%,P〈0.01),无高湿条件影响下,空气中细颗粒物对能见度的影响更为直接;北京地区在改善能见度的过程中,通过降低1μg·m-3的PM2.5,使能见度改善大于或远大于1 km的概率仅为18.9%,而在50.4%的时段内仅能使能见度的改善小于或远小于0.1 km。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号