首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   5篇
  国内免费   2篇
综合类   20篇
基础理论   2篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2017年   1篇
  2015年   1篇
  2014年   3篇
  2013年   1篇
  2012年   1篇
  2011年   3篇
  2010年   4篇
  2009年   1篇
  2006年   2篇
排序方式: 共有22条查询结果,搜索用时 15 毫秒
1.
红枫湖钻孔沉积物中滴滴涕的沉积记录   总被引:1,自引:0,他引:1       下载免费PDF全文
采用GC/MS方法分析了红枫湖钻孔沉积物中滴滴涕的垂直分布状况,并对其来源和生态风险进行了分析和评估.红枫湖钻孔沉积物中滴滴涕的含量介于7.6~23.7ng/g之间,且从底层至表层基本上呈下降的趋势.其中,1981~1983年间有一个急剧下降的过程,随后基本上呈缓慢下降的趋势.沉积物中滴滴涕的组成以p,p′-DDTs(p,p′-DDT、p,p′-DDE和p,p′-DDD的总和)为主,p,p′-DDTs与o,p′-DDTs(o,p′-DDT、o,p′-DDE和o,p′-DDD总和)的比值在5.1~8.4之间,说明沉积物中的滴滴涕主要来源于农药滴滴涕的残留.又因为沉积物中残留的滴滴涕是以它的代谢产物为主,DDT/(DDD+DDE)的比值为0.31~0.84,所以沉积物中的滴滴涕主要源于历史的残留.此外,DDT/(DDD+DDE)和DDE/DDD比值的垂直变化特征显示,尽管我国1983年就禁止了滴滴涕在农业上的使用,但直至1990年前后,红枫湖流域内仍存在滴滴涕使用的可能.风险评价的结果显示,红枫湖表层沉积物中DDE、DDD、DDT和DDTs的含量均介于ERL和ERM值之间,可能造成潜在的生态风险,因此红枫湖沉积物中滴滴涕的污染仍值得密切关注.  相似文献   
2.
成渝经济区河流表层沉积物中多溴联苯醚的分布特征   总被引:4,自引:3,他引:1  
在成渝经济区内采集了19个表层沉积物样品,采用GCMS方法对其中的PBDEs(Polybrominated Diphenyl Ethers,多溴联苯醚)进行了检测.结果表明,沉积物中w(ΣPBDEs)(ΣPBDEs包括BDE-1,BDE-15,BDE-17,BDE-28,BDE-47,BDE-66,BDE-71,BDE-85,BDE-99,BDE-100,BDE-126,BDE-138,BDE-153,BDE-154,BDE-166,BDE-181,BDE-183和BDE-190)为0.20~6.45 ng/g,w(BDE-209)为0.44~6.29 ng/g.与其他地区相比,成渝经济区内PBDEs的污染水平相对较低,大部分样品中的PBDEs以BDE-209为主,说明成渝经济区河流沉积物中的PBDEs主要来自十溴联苯醚;但PBDEs的组成特征显示,彭山岷江大桥沉积物中的PBDEs主要来自五溴联苯醚,而官渡沉积物中的PBDEs主要来自八溴联苯醚.此外,一些以往工作较少关注的PBDEs单体,如BDE-1,BDE-15,BDE-181和BDE-190等,不但在沉积物中的检出率较高(均高于70%),而且有的含量也相对较高.  相似文献   
3.
从滇池不同区域采集到11个表层沉积物,测定2类持久性有机污染物即多氯联苯(PCBs)和有机氯农药(OCPs)的含量,同时对沉积物中污染物的污染程度、分布特征、污染来源进行了研究。结果表明,沉积物中污染残留总体含量为DDTsHCHsPCBs,含量分别是0.26~75.20ng/g,0.63~26.0ng/g和0.64~17.7ng/g;污染物分布受人工大坝阻隔作用明显,大坝上游沉积物中污染物含量比下游高一到二个数量级。PCBs组成以三氯和五氯为主,这与我国历史上多氯联苯产品的生产和使用状况相吻合。(p,p'-DDE+p,p'-DDD)/DDTs0.84和β-HCH/HCHs0.45,比值结果显示出OCPs组成以降解和残留产物为主,表明周边土壤中残留的农药是滇池沉积物中农药的主要来源。生态风险值采用加拿大环保局提出的生态风险评价框架,结果表明,滇池上游(草海)沉积物总体潜在风险较高,应当引起关注。  相似文献   
4.
西南地区水库生态环境特征与研究展望   总被引:1,自引:0,他引:1  
西南是我国水资源富集区,随着清洁能源"西电东送"、城镇化建设和水利水电发展战略的持续实施,西南地区水库的数量将不断被刷新,水库数量快速增长与日益凸显的生态环境问题存在突出矛盾。西南地区水库具有独特的地质地理背景和生态环境特征,主要表现在:1)具人工建造属性,水环境与生态系统演化起点不同于天然湖泊;2)水位逆周期人为调控,消落带生态功能退化;3)亚深水型,水体季节性分层控制了湖泊的关键物理、化学和生物过程;4)沉积物有机质和营养盐蓄积量大,潜在二次污染风险大;5)物质循环的累积效应对水库及下游水环境与水生态安全具重要影响;6)水体富营养化与重金属污染叠加、复合;7)物质循环和生物过程受多界面作用控制。当前对西南地区亚深水型水库生态环境的研究远落后于东部浅水湖泊,亟待对其生态环境演变过程与规律开展深入研究,研究建立与之适宜的水环境演变理论和治理技术体系,为该类型水库生态环境保护与治理提供有效科技支撑。  相似文献   
5.
超滤与三维荧光光谱的结合可以表征不同类型荧光物质相对分子量的分布规律,揭示它们的来源以及组分差异.本项研究用截留相对分子量为1 000和10 000的再生纤维素超滤膜,对乌江水库不同深度水体中的溶解有机质进行了分离,利用三维荧光光谱表征了3种不同相对分子量组分中发荧光有机质的光谱特征.结果表明:荧光物质主要存在于真溶液(<1 000)中.水体在丰水期和枯水期的荧光峰存在差异.丰水期主要存在4种类型的荧光峰:类富里酸荧光A峰和C峰,类蛋白荧光峰B峰和D峰.枯水期则只表现出3种类型的荧光峰,类富里酸荧光峰C不明显,原因可能是此时水库处于蓄水状态,内部生物活动作用显著,产生的类蛋白荧光物质强度较大从而掩盖峰C的强度.然而72 m以下由于厌氧还原条件的出现,沉积物向水体释放了溶解有机质组分,原本强度被掩盖的荧光峰C明显出现在1 000~10 000组分中.  相似文献   
6.
利用索氏抽提、Tenax部分萃取和沉积物的粒度和密度分离等方法对滇池沉积物中多环芳烃(PAHs)的赋存状态及其再分配进行了研究。研究结果表明:滇池沉积物中PAHs主要存在于小粒度和低密度的组分中;尽管PAHs在粒度分布上存在一定的差异,但沉积物中碳质吸附剂的组成和含量才是决定PAHs在沉积物中赋存状态的主要因素;由于PAHs与沉积物中不同吸附剂相互作用的差异,随着时间的推移,沉积物中的PAHs存在一个再分配过程,吸附在无定形有机质和无机矿物等弱吸附剂上的PAHs逐渐向黑炭、焦炭等碳质吸附剂上转移,导致沉积物中的PAHs慢慢被锁定,因而其生物有效性也逐渐下降。  相似文献   
7.
滇池PAHs的沉积记录、来源及其生态风险评估   总被引:1,自引:0,他引:1       下载免费PDF全文
采用GC/MS方法分析了滇池沉积柱中16种美国EPA优控的多环芳烃(PAHs)的垂直分布状况,并对其来源变化及生态风险进行了分析和评估.研究表明:滇池沉积柱中PAHs的含量范围为558~6418 ng·g-1,并在20世纪90年代初达到峰值,这明显不同于发达国家的同类研究,也与国内沿海地区和偏远湖泊的相关研究有所不同.滇池沉积物中的PAHs主要来自当地的家庭燃煤、木材和生物秸秆等的低温燃烧过程,但工业燃煤和机动车尾气等高温燃烧过程释放的PAHs的相对含量近年来有明显增加的趋势.风险评估结果显示,滇池中上层沉积物中的PAHs可能存在潜在的生态风险,而这些生态风险主要来自低环数的NAP、FLU、PHEN和高环数的BbF、BaP、DBA等.  相似文献   
8.
采用GC-MS分析了成渝经济区内六大水系(长江、 岷江、 沱江、 涪江、 渠江以及嘉陵江)中19个表层沉积物样品的16种美国EPA优先控制多环芳烃(PAHs).结果表明,PAHs的含量范围为48.2 ~723.1 ng/g(平均276.1 ng/g),最高值在长江流域石门子采样点,最低值在涪江流域百倾采样点.各流域表层沉积物中PAH16含量总体趋势为:长江(358.6 ng/g) > 岷江(322.2 ng/g) > 沱江(292.7 ng/g) > 渠江(260.6 ng/g) > 嘉陵江(240.2 ng/g) > 涪江(82.4 ng/g).沉积物中PAHs组成为: 2 ~ 3环占15.1% ~ 52.3%、 4环占24.4% ~ 44.5%、 5 ~ 6环占3.3% ~ 56.9%.采用分子比值法cAn/c(An+ Phe)cFlA/c(FlA + Pyr)以及cInP /c(InP + BghiP)分析污染来源,表明各流域表层沉积物中PAHs主要源于草、 木和煤的燃烧及石化产品的燃烧.采用表观效应阈值法进行生态风险评价,表明表层沉积物中的PAHs对生态环境的影响目前还处于较低风险水平.  相似文献   
9.
羊卓雍错(简称“羊湖”)流域是我国生态环境保护的重点区域,但羊湖水体pH往往超标,令当地管理部门倍感压力.针对羊湖pH偏高的问题,利用地球化学方法,从水化学和流域风化的角度寻找相关线索,以揭示羊湖水体pH偏高的成因.结果表明:①羊湖水体pH在8.5~9.3之间,超标率为49%,同时具有季节性变化特征;而羊湖流域水源(包括地表水、地下水和冰川融水等)pH中间值为8.52,基本代表该流域水源pH的背景值.②羊湖流域水源水化学类型为Ca-HCO3或Ca-SO4,汇入羊湖经历长期蒸发浓缩和复杂地球化学过程后,水化学类型转化为Mg-SO4.③羊湖流域不但存在碳酸盐岩和硅酸盐岩的风化,还有硫化物矿物风化特征.羊湖水体pH超标与羊湖流域水源无关,而是流域风化和其自身长期自然演化的结果.流域风化为羊湖水体提供的大量HCO3-,是羊湖pH在特定条件下自然演化的物质基础.羊湖封闭型水动力学特征使HCO3-滞留并累积在水体中,这为羊湖pH自然演化提供了一个必要条件.在长期蒸发浓缩过程中,水体中一部分HCO3-转化为CO32-,导致水体pH逐渐上升,这是羊湖水体pH偏高的充分条件.简言之,羊湖pH偏高是流域风化、封闭型的水动力学和水体长期蒸发浓缩共同作用的结果.鉴于羊湖水体pH偏高是长期自然演化的结果,建议将pH从羊湖水质管理的考核指标中排除,以免造成不必要的管理成本和压力.   相似文献   
10.
检测了采自广东省13个城市水产市场和超市的390个鱼样品中滴滴涕类农药(DDT)及其代谢物(包括o,p’-DDE,p,p’-DDE,o,p’-DDD,p,p’-DDD,o,p’-DDT,p,p’-DDT)的残留浓度.鱼体中DDTs的含量为8.7 ̄18002ng·g-1(脂肪重)或0.1 ̄698.9ng·g-1(湿重).不同鱼类之间因生活环境和生活习性的不同,而使其DDTs含量存在较大差别.与我国鱼类食品中DDTs的残留标准相比,仅有2个样品中的DDTs含量水平超过此标准,约占样品总数的0.51%,而超过欧盟水产品标准和美国环境保护局(EPA)标准的样品分别占13.8%和30.5%.广东省居民通过鱼类消费每天DDTs的摄入量为30.8ng·kgbodyweight-1·day-1,仅占FAO/WHO每日允许摄入量的0.3%,但高于其他国家或地区.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号