首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   3篇
  国内免费   28篇
安全科学   3篇
综合类   27篇
基础理论   2篇
污染及防治   12篇
  2023年   1篇
  2022年   2篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2015年   6篇
  2014年   8篇
  2013年   6篇
  2012年   6篇
  2011年   2篇
  2010年   2篇
  2009年   3篇
  2008年   1篇
  2002年   1篇
  2000年   1篇
排序方式: 共有44条查询结果,搜索用时 15 毫秒
1.
成本低廉和无二次污染的"绿色"合成纳米材料是发展原位纳米环境修复技术的前沿研究课题之一.本文以绿茶提取液为还原剂和稳定剂进行"绿色"合成纳米铁,探讨在不同的气氛下"绿色"合成的纳米铁颗粒的主要成分,以期为调控合成纳米铁系材料提供基础研究.首先,利用扫描电子显微镜(SEM)、X射线能谱(EDS)、X射线光电子能谱分析(XPS)和傅里叶变换红外光谱(FTIR)等表征手段对不同反应气氛下合成的纳米铁颗粒的表面微观形貌、尺寸和价态结构进行分析.结果发现,在通入N2情况下,合成的纳米铁颗粒粒径为(84.7±11.5)nm,其主要成分以纳米零价铁为主;在通入空气情况下,合成的纳米铁粒径为(117.8±26.2)nm,其主要成分是纳米零价铁、氧化铁和四氧化三铁的混合物;通入O2时,合成的纳米铁粒径为(141.2±26.3)nm,其主要成分以四氧化三铁为主.其次,评价在不同气氛条件下合成纳米铁颗粒对去除亚甲基蓝(MB)的反应活性.结果表明,在反应温度313 K下降解初始浓度为50 mg·L-1的MB溶液,反应5 min时已达到平衡,通入N2合成的纳米铁降解MB,去除率高达98.7%,而通入O2合成的纳米铁反应效率低,对MB的去除率仅为65.3%.最后,从以上发现提出不同气氛下可以调控"绿色"合成的铁系纳米材料成分,从而导致不同的纳米修复环境中污染物的能力.  相似文献   
2.
石墨烯是促进还是抑制嗜酸性氧化亚铁硫杆菌生长?   总被引:1,自引:1,他引:0  
尽管石墨烯以其独特的光学、电学、力学特性在各大领域都具有广阔的应用前景,但其工业化使用后在环境当中的行为,特别是遗留下的石墨烯对生态系统的毒性研究则鲜见报道.因此,本文以嗜酸性氧化亚铁硫杆菌(Acidithiobacillus ferrooxidans)为目标微生物,探讨不同浓度(1、10、50 mg·L-1)石墨烯对Acidithiobacillus ferrooxidans的毒性效应.结果表明,石墨烯对Acidithiobacillus ferrooxidans的生长有明显抑制作用,且抑制作用随着石墨烯浓度的降低而增强.在石墨烯投加量为1 mg·L-1时,培养48 h后菌株的生长量OD420达到最大值0.045,低于空白组的0.163;并且其可溶性蛋白含量也达到最大值1.546 mg·L-1,低于空白组的3.789 mg·L-1.不同浓度石墨烯对体系p H和ORP均存在不同程度的影响,低浓度下的石墨烯影响最为显著.此外,通过扫描电镜(SEM)和荧光显微镜分析,进一步证实Acidithiobacillus ferrooxidans能在高浓度的石墨烯上生长,而低浓度的石墨烯则会对细胞膜造成损伤,它极其尖锐的边缘是细菌失活的有效机制.因此,石墨烯的毒性具有剂量效应,这一结果可为石墨烯合理利用及评价其生态毒性提供理论依据.  相似文献   
3.
氧化石墨烯对亚甲基蓝和铜离子的共吸附行为研究   总被引:6,自引:4,他引:2  
氧化石墨烯(GO)具有高比表面积和丰富的含氧官能团,表面存在着大量的吸附点位,被认为是去除水体污染物的高效吸附剂,而其在有机物-重金属复合污染环境中的吸附行为却鲜有报道.因此,本文采用改良Hummers法制备出GO,通过扫描电镜(SEM)、透射电镜(TEM)、红外光谱(FTIR)、拉曼光谱(Raman)和X射线衍射(XRD)等物理表征方法对GO的形貌结构和表面官能团进行了表征.随后,侧重研究了GO对有机物及重金属污染物的单独和共吸附行为,选取亚甲基蓝(MB)与Cu(Ⅱ)作为复合污染水体的特征污染物,探讨了不同浓度Cu(Ⅱ)对MB及不同浓度MB对Cu(Ⅱ)的吸附性能的影响.结果表明,不同类型的污染物单独存在时,GO对MB和Cu(Ⅱ)的吸附量分别为29.13和424.16mg·g-1;而当上述两种污染物共存时,GO对MB和Cu(Ⅱ)的吸附性能均明显下降,这说明MB与Cu(Ⅱ)在GO表面的吸附点位存在着竞争吸附关系,并且MB对Cu(Ⅱ)吸附的抑制作用明显高于Cu(Ⅱ)对MB吸附的影响.  相似文献   
4.
采用纳米Ni/Fe双金属对直接耐酸大红4BS(DFS-4BS)染料进行去除研究.考察了不同反应参数对DFS-4BS去除效果的影响.结果表明,在pH值5.0,30 ℃,DFS-4BS质量浓度100 mg/L,纳米Ni/Fe质量浓度8 g/L和反应4 h的优化条件下,DFS-4BS的去除率达89.5%. 动力学研究表明,纳米Ni/Fe对DFS-4BS的降解符合伪一级反应动力学方程,表观速率常数Kobs为6.3×10-3 min-1,半衰期为110.02 min.纳米Ni/Fe对实际废水中的DFS-4BS去除率为71.2%.  相似文献   
5.
将桉树叶提取液绿色还原氧化石墨烯(G-rGO)电极和微生物还原氧化石墨烯(B-rGO)电极依次作为微生物燃料电池(MFC)阳极,采用红外光谱(FTIR)、X射线衍射(XRD)、扫描电镜(SEM)对所制备的电极进行表征,并采用循环伏安法(CV)、交流阻抗法(EIS)对比2种电极的电化学性能.结果发现,G-rGO阳极的内阻为243.87Ω,应用于MFC时最大功率密度和最大输出电压分别为18.77 W·m~(-3)和760 mV,对照组B-rGO电极的内阻为299.11Ω,将其应用于MFC时最大功率密度和最大输出电压分别为13.16 W·m~(-3)和635 mV,对照组未修饰阳极的内阻为375.21Ω,最大功率密度和最大输出电压分别为8.97 W·m~(-3)和480 mV.研究表明,G-rGO电极电阻更小,导电性能更优越.  相似文献   
6.
重金属共存严重抑制了微生物降解染料的效率,本研究拟采用EDTA螯合Cr提高Burkholderia cepacia C09G降解复合污染中孔雀绿的效率.实验结果表明,0.1 mmol·L~(-1)孔雀绿单独存在条件下,24 h的生物降解率达到96.2%;然而,在0.5 mmol·L~(-1)Cr(VI)共存条件下,60 h的降解率仅为6.7%.当加入0.5 mmol·L~(-1)EDTA螯合剂后,60 h时孔雀绿的降解率提高到18.8%.当EDTA浓度为0.5 mmol·L~(-1)时,最佳螯合Cr(VI)的浓度为0.7 mmol·L~(-1),此时,60 h后孔雀绿的降解率达到35.3%,对Cr(VI)的吸附率为24.6%.此外,通过EDS、SEM、XPS分析证明,EDTA可以减小Cr(VI)的毒性,Burkholderia cepacia C09G可将吸附的Cr(VI)还原为Cr(III).  相似文献   
7.
以氯化铁为铁源,硼氢化钠为还原剂,壳聚糖为稳定剂,采用液相还原法制备壳聚糖稳定纳米铁(CS-nZⅥ);研究了印染废水中常见助剂NaNO3、Na2SO4、NaH2PO4、K2Cr2O7、EDTA二钠盐存在下,超声波辅助CS-nZⅥ对酸性品红(AF)降解的影响。结果表明,反应15 min,0.01 g CS-nZⅥ对25 mL、100 mg/L AF的去除率高达99.9%;各种助剂的存在使得纳米铁表面不同程度失活,阻碍反应的进行,使得AF的去除率下降。NaNO3、K2Cr2O7、EDTA二钠盐与纳米铁发生反应,与AF存在明显的竞争作用。重复利用实验表明,CS-nZⅥ重复利用7次仍具有一定的反应活性。此外,CS-nZⅥ对加标(50 mg/L)实际废水中AF的去除率达到99%以上,表明CS-nZⅥ是一种潜在的环境修复材料。  相似文献   
8.
采集某炼油厂废水处理车间的回流污泥,以十四烷作为唯一碳源筛选分离到一株高效十四烷降解菌。经形态学观察和生理生化特征研究,鉴定为布兰汉氏球菌(Branhamella sp.)。对其降解十四烷的条件进行了优化,实验结果表明,最适降解条件为接种量0.5%,温度35℃,初始pH=7,碳氮摩尔比为0.4:1,在最佳条件下,当十四烷的初始浓度约为50mg/L时,在12h内降解率高达98%以上。  相似文献   
9.
况烨  周琰  王清萍  陈祖亮 《环境科学》2012,33(9):3160-3166
研究不同pH(8.0、6.0和3.0)下金属纳米颗粒(Fe和Fe/Ni)对纺锤芽孢杆菌(BFN)降解苯酚的影响.实验结果发现pH在8.0和6.0时投加2种金属纳米颗粒(Fe和Fe/Ni)对BFN降解苯酚有促进作用,其原因主要是纳米颗粒在水中持续腐蚀产生H2,为BFN降解苯酚提供电子,促进BFN的生长.但在pH=3.0时,只有BFN-纳米Fe耦合体系才使苯酚得到部分降解,主要是因为纳米Fe颗粒与水反应产生OH-,使pH值有所升高,更适宜BFN的生长,同时提供电子供体H2促进BFN对苯酚的利用.扫描电镜(SEM)和能谱分析(EDS)数据证实金属纳米颗粒(Fe和Fe/Ni)在反应后附着在微生物表面,但微生物的表面形态并未发生显著改变.因此,纳米金属颗粒虽然通过附着影响微生物的活性,但其在腐蚀过程中产生的H2将作为电子供体而被BFN所利用,综合作用的结果是有利于BFN的生长进而提高苯酚的降解速率.  相似文献   
10.
高岭土负载纳米Fe/Ni同时去除水中Cu2+和NO3-   总被引:1,自引:0,他引:1  
蔡翔  高滢  陈祖亮 《环境科学学报》2013,33(7):1898-1906
工业废水常含有不同污染物如重金属离子和无机阴离子,而如何有效去除复合污染物就成为环境科学前沿研究的挑战性课题.这些污染物因化学性质不同而导致去除机理和途径也不同.本文采用合成高岭土负载纳米双金属Fe/Ni(K-Fe/Ni)同步去除水中Cu2+和NO-3.结果表明K-Fe/Ni能有效去除水中Cu2+和NO-3,但它们的去除效果却会相互受到影响.在Cu2+浓度为200mg·L-1时,NO-3的去除率达到42.5%;而未加入Cu2+时,NO-3的去除率仅有26.9%,说明Cu2+的存在提高了NO-3降解效率.同样,水中NO-3的存在也影响Cu2+的去除(Cu2+去除率从99.7%降到96.5%).但NO-3浓度对去除Cu2+的影响小于Cu2+浓度对NO-3的影响.通过BET比表面积、X射线衍射(XRD)、扫描电镜(SEM)、X射线能量散射(EDS)和X射线光电分析(XPS)对K-Fe/Ni表征的结果显示,反应后K-Fe/Ni的表面存在铁的氧化物、Ni0和被还原的Cu0.基于以上结果,我们发现K-Fe/Ni同步去除水中Cu2+和NO-3的机理是:高岭土负载下的纳米Fe0作为还原剂,在Ni0的催化产氢作用下将Cu2+还原成Cu0并沉积在K-Fe/Ni上而形成纳米Fe/Ni/Cu三金属催化剂,从而加速催化水中NO-3降解.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号