首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   1篇
废物处理   1篇
环保管理   1篇
综合类   18篇
基础理论   9篇
污染及防治   6篇
评价与监测   2篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2014年   3篇
  2012年   1篇
  2011年   2篇
  2008年   3篇
  2007年   1篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1979年   1篇
  1974年   1篇
  1972年   1篇
  1965年   1篇
  1964年   2篇
  1961年   2篇
  1960年   3篇
  1959年   1篇
  1957年   4篇
  1956年   1篇
  1943年   1篇
排序方式: 共有37条查询结果,搜索用时 31 毫秒
1.
2.
3.
4.
Although experiences with ecological restoration continue to accumulate, the effectiveness of restoration for biota remains debated. We complemented a traditional taxonomic analysis approach with information on 56 species traits to uncover the responses of 3 aquatic (fish, macroinvertebrates, macrophytes) and 2 terrestrial (carabid beetles, floodplain vegetation) biotic groups to 43 hydromorphological river restoration projects in Germany. All taxonomic groups responded positively to restoration, as shown by increased taxonomic richness (10–164%) and trait diversity (habitat, dispersal and mobility, size, form, life history, and feeding groups) (15–120%). Responses, however, were stronger for terrestrial than aquatic biota, and, contrary to our expectation, taxonomic responses were stronger than those of traits. Nevertheless, trait analysis provided mechanistic insights into the drivers of community change following restoration. Trait analysis for terrestrial biota indicated restoration success was likely enhanced by lateral connectivity and reestablishment of dynamic processes in the floodplain. The weaker response of aquatic biota suggests recovery was hindered by the persistence of stressors in the aquatic environment, such as degraded water quality, dispersal constraints, and insufficient hydromorphological change. Therefore, river restoration requires combined local- and regional-scale approaches to maximize the response of both aquatic and terrestrial organisms. Due to the contrasting responses of aquatic and terrestrial biota, the planning and assessment of river restoration outcomes should consider effects on both components of riverine landscapes.  相似文献   
5.
The ongoing biodiversity crisis becomes evident in the widely observed decline in abundance and diversity of species, profound changes in community structure, and shifts in species’ phenology. Insects are among the most affected groups, with documented decreases in abundance up to 76% in the last 25–30 years in some terrestrial ecosystems. Identifying the underlying drivers is a major obstacle as most ecosystems are affected by multiple stressors simultaneously and in situ measurements of environmental variables are often missing. In our study, we investigated a headwater stream belonging to the most common stream type in Germany located in a nature reserve with no major anthropogenic impacts except climate change. We used the most comprehensive quantitative long-term data set on aquatic insects available, which includes weekly measurements of species-level insect abundance, daily water temperature and stream discharge as well as measurements of additional physicochemical variables for a 42-year period (1969–2010). Overall, water temperature increased by 1.88 °C and discharge patterns changed significantly. These changes were accompanied by an 81.6% decline in insect abundance, but an increase in richness (+8.5%), Shannon diversity (+22.7%), evenness (+22.4%), and interannual turnover (+34%). Moreover, the community's trophic structure and phenology changed: the duration of emergence increased by 15.2 days, whereas the peak of emergence moved 13.4 days earlier. Additionally, we observed short-term fluctuations (<5 years) in almost all metrics as well as complex and nonlinear responses of the community toward climate change that would have been missed by simply using snapshot data or shorter time series. Our results indicate that climate change has already altered biotic communities severely even in protected areas, where no other interacting stressors (pollution, habitat fragmentation, etc.) are present. This is a striking example of the scientific value of comprehensive long-term data in capturing the complex responses of communities toward climate change.  相似文献   
6.
The decomposition of leaf litter is controlled by several factors. One factor that may play an important role is the content of condensed tannins (proanthocyanidins). Here we designed a combined method to isolate proanthocyanidins from leaf extracts, to convert them to anthocyanidins, and to quantify individual anthocyanidins exactly with a new, simple, but sensitive high-performance liquid chromatography method. We used this method to show composition of proanthocyanidins and to monitor degradation of proanthocyanidins and individual constituents in leaf litter in an aquatic environment over time. Despite the rapid decrease in the initial concentrations, a fraction of the proanthocyanidins remained detectable for several weeks.  相似文献   
7.
Elevated atmospheric CO2 treatments stimulated biomass production in Fe-sufficient and Fe-deficient barley plants, both in hydroponics and in soil culture. Root/shoot biomass ratio was increased in severely Fe-deficient plants grown in hydroponics but not under moderate Fe limitation in soil culture. Significantly increased biomass production in high CO2 treatments, even under severe Fe deficiency in hydroponic culture, indicates an improved internal Fe utilization. Iron deficiency-induced secretion of PS in 0.5 to 2.5 cm sub-apical root zones was increased by 74% in response to elevated CO2 treatments of barley plants in hydroponics but no PS were detectable in root exudates collected from soil-grown plants. This may be attributed to suppression of PS release by internal Fe concentrations above the critical level for Fe deficiency, determined at final harvest for soil-grown barley plants, even without additional Fe supply. However, extremely low concentrations of easily plant-available Fe in the investigated soil and low Fe seed reserves suggest a contribution of PS-mediated Fe mobilization from sparingly soluble Fe sources to Fe acquisition of the soil-grown barley plants during the preceding culture period. Higher Fe contents in shoots (+52%) of plants grown in soil culture without Fe supply under elevated atmospheric CO2 concentrations may indicate an increased efficiency for Fe acquisition. No significant influence on diversity and function of rhizosphere-bacterial communities was detectable in the outer rhizosphere soil (0-3 mm distance from the root surface) by DGGE of 16S rRNA gene fragments and analysis of marker enzyme activities for C-, N-, and P-cycles.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号