首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
  国内免费   2篇
综合类   5篇
基础理论   2篇
污染及防治   6篇
评价与监测   1篇
社会与环境   2篇
  2021年   2篇
  2020年   1篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   3篇
  2010年   1篇
  2007年   2篇
排序方式: 共有16条查询结果,搜索用时 621 毫秒
1.
Although stewardship has been widely defined and used in environmental management and planning, there is a dearth of studies that describe how the lay public perceives this concept. A national sample of residents in 14 states who live near DOE nuclear facilities were interviewed to delineate public understanding and awareness of the stewardship program of the U.S. Department of Energy (DOE). This study discusses the findings of the survey and discusses how institutional trust influences public participation and resident’s choices of potential stewards. Almost 40% of the respondents could not define stewardship; those who did, believed that ‘responsibility,’ ‘management,’ and ‘accountability’ are key elements of stewardship. In addition, about a third of the respondents identified Federal groups and the DOE as potential stewards. Readers should send their comments on this paper to: BhaskarNath@aol.com within 3 months of publication of this issue  相似文献   
2.

Introduction

Wastewater derived from leather production may contain phenols, which are highly toxic, and their degradation could be possible through bioremediation technologies.

Materials, methods and results

In the present work, microbial degradation of phenol was studied using a tolerant bacterial strain, named CS1, isolated from tannery sediments. This strain was able to survive in the presence of phenol at concentrations of up to 1,000?mg/L. On the basis of morphological and biochemical properties, 16S rRNA gene sequencing, and phylogenetic analysis, the isolated strain was identified as Rhodococcus sp. Phenol removal was evaluated at a lab-scale in Erlenmeyer flasks and at a bioreactor scale in a stirred tank reactor. Rhodococcus sp. CS1 was able to completely remove phenol in a range of 200 to 1,000?mg/L in mineral medium at 30 ± 2?°C and pH 7 as optimal conditions. In the stirred tank bioreactor, we studied the effect of some parameters, such as agitation (200?C600 rpm) and aeration (1?C3?vvm), on growth and phenol removal efficiency. Faster phenol biodegradation was obtained in the bioreactor than in Erlenmeyer flasks, and maximum phenol removal was achieved at 400?rpm and 1 vvm in only 12?h. Furthermore, Rhodococcus sp. CS1 strain was able to grow and completely degrade phenols from tannery effluents after 9?h of incubation.

Conclusion

Based on these results, Rhodococcus sp. CS1 could be an appropriate microorganism for bioremediation of tannery effluents or other phenol-containing wastewaters.  相似文献   
3.
4.
We report on the biodegradation of pure hydrocarbons and chemotaxis towards these compounds by an isolated chlorophenol degrader,Pseudomonas strain H.The biochemical and phylogenetic analysis of the 16S rDNA sequence identified Pseudomonas strain H as having 99.56% similarity with P.aeruginosa PA01.This strain was able to degrade n-hexadecane,1-undecene,1-nonene,1-decene,1-dodecene and kerosene.It grew in the presence of 1-octene,while this hydrocarbons is toxic to other hydrocarbons degraders.Pseudomonas strain H was also chemotactic towards n-hexadecane,kerosene,1-undecene and 1-dodecene.These results show that this Pseudomonas strain H is an attractive candidate for hydrocarbon-containing wastewater bioremediation in controlled environments.Since the classical standard techniques for detecting chemotaxis are not efficient at low bacterial concentrations,we demonstrate the use of the dynamic speckle laser method,which is simple and inexpensive,to confirm bacterial chemotaxis at low cell concentrations (less than 105 colony-forming unit per millilitre (CFU/mL)) when hydrocarbons are the attractants.  相似文献   
5.
Phenolic compounds are contaminants frequently found in water and soils. In the last years, some technologies such as phytoremediation have emerged to remediate contaminated sites. Plants alone are unable to completely degrade some pollutants; therefore, their association with rhizospheric bacteria has been proposed to increase phytoremediation potential, an approach called rhizoremediation. In this work, the ability of two rhizobacteria, Burkholderia kururiensis KP 23 and Agrobacterium rhizogenes LBA 9402, to tolerate and degrade phenolic compounds was evaluated. Both microorganisms were capable of tolerating high concentrations of phenol, 2,4-dichlorophenol (2,4-DCP), guaiacol, or pentachlorophenol (PCP), and degrading different concentrations of phenol and 2,4-DCP. Association of these bacterial strains with B. napus hairy roots, as model plant system, showed that the presence of both rhizospheric microorganisms, along with B. napus hairy roots, enhanced phenol degradation compared to B. napus hairy roots alone. These findings are interesting for future applications of these strains in phenol rhizoremediation processes, with whole plants, providing an efficient, economic, and sustainable remediation technology.  相似文献   
6.
Despite their relevance for risk assessment, the interactive effects of pesticide and predation cues are poorly understood because the underlying behavioral and physiological mechanisms are largely unknown. To explore these mechanisms, we reared larvae of the damselfly Coenagrion puella at three different predation risk levels and a range of environmentally realistic concentrations of three pesticides used worldwide (atrazine, carbaryl, and endosulfan). We compared key development responses (growth rate, developmental time, and final size) against food ingestion, assimilation, and conversion efficiency, and acetylcholinesterase (AChE) activity. Predation risk impaired all endpoints, including AChE activity, while the effects of pesticide stress were smaller for atrazine and endosulfan and absent for carbaryl. The effects of both stressors and their interaction on life history were mostly indirect through resource acquisition and energy allocation. Compensatory physiological mechanisms to pesticide stress (atrazine and endosulfan) were present in larvae reared in the absence of predation stress but were offset under predation stress. As a result, smaller size (atrazine and endosulfan) and lower growth rate (endosulfan) from pesticide stress were only found in the highest predation risk treatment. Our results provide insight as to the conditions under which interactions between stressors are likely to occur: damselfly populations at high density and living in fish ponds will be more affected by pesticides than populations at low densities in fishless ponds. By identifying variables that may shape the interaction between predation stress and other stressors such as pesticides, our mechanistic approach may help to bridge the gap between laboratory and field studies.  相似文献   
7.
8.

Introduction

Transgenic plant strategies based on peroxidase expression or overexpression would be useful for phenolic compound removal since these enzymes play an important role in phenolic polymerizing reactions.

Material and methods

Thus, double transgenic (DT) plants for basic peroxidases were obtained and characterized in order to compare the tolerance and efficiency for 2,4-dichlorophenol (2,4-DCP) removal with WT and simple transgenic plants expressing TPX1 or TPX2 gene. Several DT plants showed the expression of both transgenes and proteins, as well as increased peroxidase activity.

Results

DT lines showed higher tolerance to 2,4-DCP at early stage of development since their germination index was higher than that of WT seedlings exposed to 25?mg/L of the pollutant. High 2,4-DCP removal efficiencies were found for WT tobacco plants. TPX1 transgenic plants and DT (line d) reached slightly higher removal efficiencies for 10?mg/L of 2,4-DCP than WT plants, while DT plants (line A) showed the highest removal efficiencies (98%). These plants showed an increase of 21% and 14% in 2,4-DCP removal efficiency for solutions containing 10 and 25?mg/L 2,4-DCP, respectively, compared with WT plants. In addition, an almost complete toxicity reduction of postremoval solutions using WT and DT plants was obtained through AMPHITOX test, which indicates that the 2,4-DCP degradation products would be similar for both plants.

Conclusion

These results are relevant in the field of phytoremediation application and, moreover, they highlight the safety of using DT tobacco plants because nontoxic products were formed after an efficient 2,4-DCP removal.  相似文献   
9.
A native bacterial strain with high capability for Cr (VI) removal was isolated from tannery sediments located in Elena (Córdoba Province, Argentina). The strain was characterized by amplification of 16S rRNA gene and identified as Serratia sp. C8. It was able to efficiently remove different Cr (VI) concentrations in a wide range of pHs and temperatures. The addition of different carbon sources as well as initial inoculum concentration were analyzed, demonstrating that Serratia sp. C8 could reduce 80 % of 20 mg/L Cr (VI) in a medium containing glucose 1 g/L, at pH 6–7 and 28 °C as optimal conditions, using 5 % inoculum concentration. The mechanisms involved in Cr (VI) removal were also evaluated. The strain was capable of biosorpting around 7.5–8.5 % of 20 mg/L Cr on its cell surface and to reduce Cr (VI). In addition, approximately a 54 and 46 % of total Cr was detected in the biomass and in the culture medium, respectively, and in the culture medium, Cr (III) was the predominant species. In conclusion, Serratia sp. C8 removed Cr (VI) and the mechanisms involved in decreasing order of contribution were as follows: reduction catalyzed by intracellular enzymes, accumulation into the cells, and biosorption to the microbial biomass. This strain could be a suitable microorganism for Cr (VI) bioremediation of tannery sediments and effluents or even for other environments contaminated with Cr.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号