首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
综合类   3篇
基础理论   8篇
污染及防治   7篇
  2017年   1篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2001年   1篇
  2000年   3篇
  1993年   1篇
  1991年   1篇
  1990年   2篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
排序方式: 共有18条查询结果,搜索用时 15 毫秒
1.
Hexabromocyclododecanes (HBCDs) are high production volume chemicals (>20000 ty(-1)) used as flame retardants for plastics and textiles. Lately, we reported on the stereoselective isomerization of beta-HBCDs. Herein we present insights into the mechanism and kinetics of (+)gamma- to (+)alpha- and of (-)gamma- to (-)alpha-HBCD isomerization. Only two of the six bromine atoms migrated, indicating that rearrangements of gamma- to alpha-HBCDs are regio- and stereoselective as well. The apparent first-order isomerization rate constants increased from 0.0013 to 0.0031 to 0.0070 min(-1) at 120, 130, and 140 degrees C, respectively, corresponding to half-lives of 540, 230, and 99 min. Thus, a thermal treatment of materials containing gamma-HBCDs at temperatures >100 degrees C may induce the formation of alpha-HBCDs and, hence, may alter the diastereomeric ratio of a HBCD mixture. The inversion of vicinal dibromides in like-configurations (RR/SS) prevailed, whereas unlike-configurations (RS/SR) were not affected. An intramolecular, stereoselective migration of neighboring bromine atoms via a four-center transition state would explain the observed stereoisomer pattern and first-order kinetics. Despite the fact that vicinal dibromides in HBCDs prefer synclinal (gauche) conformations, antiperiplanar (staggered) conformations are assumed to facilitate concerted 1.2-shifts of both bromine atoms. A conformation analysis revealed that under kinetic control, only those bromine atoms in the more flexible part of the molecules are migrating, whereas those in the conserved triple-turn motive were not affected. Thus, this structural motive, common to all alpha-, beta-, and gamma-HBCDs, is more rigid and less reactive than the flexible part, containing the reacting dibromides in like-configurations.  相似文献   
2.
Summary Individual workers of the honeybee (Apis mellifera), trained to collect food from a patch of artificial flowers, were used to test the following hypotheses about the mechanism leading to a decrease in flight directionality when moving from one flower to the next. Directionality decreases with (1) an increasing amount of energy taken from a flower, (2) an increasing amount of time spent on a flower, or (3) an increasing profitability of the flower, i.e. rate of nectar uptake. The bees were tested singly on an arrangement with equidistant flowers. They could move from a decision point forward, right, left, or backwards to the next flower. The rewards at the decision point were altered. When rewards at this point were compared that offered the same quality of nectar (50% sugar solution), the time hypothesis (2) was consistent with the observed behaviour of the bees. When conditions were compared that involved two different reward qualities (50% and 25% sugar solation), none of the original hypotheses could entirely account for the results.It is suggested that a slight modification of the time hypothesis would be consistent with the observations: The bees might possibly forget their arrival direction on the flower with increasing time, but forgetting the direction of the last flower visited is intensified with more concentrated rewards.  相似文献   
3.
Summary We experimentally tested whether foraging strategies of nectar-collecting workers of the honeybee (Apis mellifera) vary with colony state. In particular, we tested the prediction that bees from small, fast growing colonies should adopt higher workloads than those from large, mature colonies. Queenright small colonies were set up by assembling 10 000 worker bees with approximately 4100 brood cells. Queenright large colonies contained 35 000 bees and some 14 500 brood cells. Thus, treatments differed in colony size but not in worker/brood ratios. Differences in workload were tested in the context of single foraging cycles. Individuals could forage on a patch of artificial flowers offering given quantities and qualities of nectar rewards. Workers of small colonies took significantly less nectar in an average foraging excursion (small: 40.1 ± 1.1 SE flowers; large: 44.8 ± 1.1), but spent significantly more time handling a flower (small: 7.3 ± 0.4 s ; large: 5.8 ± 0.4 s). When the energy budgets for an average foraging trip were calculated, individuals from all colonies showed a behavior close to maximization of net energetic efficiency (i.e., the ratio of net energetic gains to energetic costs). However, bees from small colonies, while incurring only marginally smaller costs, gained less net energy per foraging trip than those from large colonies, primarily as a result of prolonged handling times. The differences between treatments were largest during the initial phases of the experimental period when also colony development was maximally different. Our results are at variance with simple models that assume natural selection to have shaped behavior in a single foraging trip only so as to maximize colony growth. Offprint requests to: P. Schmid-Hempel  相似文献   
4.
Honeybees maximize efficiency by not filling their crop   总被引:10,自引:0,他引:10  
Summary Honeybees often abandon non-depleting food sources with a partially filled crop. This behaviour does not maximise the net rate of energy extraction from the food sources, and thus contradicts predictions of some common models for central place foragers. We show that including the metabolic costs of transport of nectar leads to models that predict partial crop-loading. Furthermore, the observed crop loads of honeybees are less consistent with those predicted by maximization of delivery rate to the hive (net energetic gain/ unit time), than with those predicted by maximization of energetic efficiency (net energetic gain/unit energy expenditure). We argue that maximization of energetic efficiency may be an adaptation to a limited flight-cost budget. This constraint is to be expected because a worker's condition seems to deteriorate as a function of the amount of flight performed.  相似文献   
5.
Summary Crop-filling by honeybees foraging at sources of variable nectar flow at a fixed distance from the hive has been shown to maximize energetic efficiency, defined as ratio of energy gained to energy spent. Predictions based on maximisation of rate of energy gain, defined as net energy gained per unit time foraging, are significantly different from observed behaviour (Schmid-Hempel et al. 1985). In this paper we consider the effect of varying travel times in addition to flow rate. The predictions of an extended version of our theoretical model are confronted with experimental results obtained by Núñez (1982). Núñez found that bees filled their crops more fully for higher flows and longer travel times. We show that when the cost of carrying a load is considered, this trend can be predicted by maximising either energetic efficiency or net rate of gain. Figure 1 shows, however, that maximisation of net rate of gain can only produce an acceptable quantitative fit if unreasonably high costs are assumed to result from carrying the load. Energetic efficiency instead generates a good quantitative fit for acceptable assumptions about this cost (Fig. 2).  相似文献   
6.
7.
Hexabromocyclododecanes (HBCDs) are high production volume chemicals currently produced in quantities exceeding 20000ty(-1). They are used as flame retardants for plastics and textiles. HBCDs are thermally labile compounds, rapidly decomposing at temperatures above 250 degrees C to form bromine radicals, which scavenge other radicals formed during pyrolysis. But certain HBCD stereoisomers must reach the environment without decomposition, because their levels in soils, sediments, and biota are increasing worldwide. The fate of individual HBCD stereoisomers during production, product use, disposal, and transformation in the environment remains unclear. Herein we report on the thermally induced, highly selective isomerization of (+) and (-)beta-HBCD. Regio- and stereoselective migration of only two of the six bromine atoms resulted in the racemization of both beta-HBCDs. First order rate constants (k(rac)) increased from 0.005, 0.011, 0.021, to 0.055min(-1) at 130, 140, 150, and 160 degrees C, corresponding to half life times tau(1/2) of 143, 63, 29, and 14min, respectively. From the deduced kinetic model, we conclude that any thermal treatment of enantiomerically enriched beta-HBCDs in the range of 100-160 degrees C will result in a loss of most optical activity within few hours. The simultaneous inversion of two asymmetric centers occurred with perfect stereocontrol. Selectively, vicinal dibromides with the RR- and the SS-configurations migrated at these temperatures. An intramolecular reaction mechanism with a four-center transition state is postulated, based on the obtained stereoisomer pattern and the observed reaction kinetics. Crystal structure analysis revealed that all vicinal dibromides in beta-HBCDs prefer synclinal (gauche) conformations. However, an antiperiplanar (staggered) conformation is assumed to facilitate the concerted 1.2-shifts of both bromine atoms, resulting in an inversion of both neighboring carbon atoms. First experiments with other HBCD stereoisomers suggest that the presented isomerization mechanism is of relevance for those stereoisomers as well.  相似文献   
8.
The molecular structures of individual HBCD stereoisomers are not elucidated yet. Recently, we isolated 8 of the 16 possible stereoisomers from a technical HBCD mixture and tentatively assigned their relative configurations. Herein we report on the isolation of enantiomerically pure (+) and (-) beta-HBCDs, both obtained from preparative chiral-phase liquid chromatography, and we present their absolute configurations determined from X-ray diffraction analysis. The absolute configuration of (+) beta-HBCD was found to be (1S,2S,5S,6R,9S,10R), while the one of (-) beta-HBCD was assigned to (1R,2R,5R,6S,9R,10S). The given structural information allows, for the first time, the unambiguous identification of these two important HBCD stereoisomers, which are typically found in technical products at proportions of about 3-5% for each enantiomer.  相似文献   
9.
Hexabromocyclododecanes (HBCDs) are high production volume chemicals used as flame retardants for plastics and textiles. They are currently produced in quantities exceeding 20,000 t/y. Despite this fact, the correct stereochemistry of most HBCDs is still not known. Six stereocenters are formed during bromination of cyclododecatrienes, resulting in mixtures of different stereoisomers. Considering all elements of symmetry, 16 different stereoisomers including six pairs of enantiomers as well as 4 meso forms are possible theoretically. Recently, we isolated 8 of the 16 possible stereoisomers from a technical HBCD mixture and assigned their relative configurations. Herein, we report on the isolation of 6 enantiomerically pure alpha-, beta-, and gamma-HBCDs, obtained from preparative chiral-phase liquid chromatography, and we present their absolute configurations, which were determined from X-ray diffraction analysis. The absolute configuration of (-) alpha-HBCD was found to be (1R,2R,5S,6R,9R,10S), while the one of (+) beta-HBCD is assigned to (1S,2S,5S,6R,9S,10R), whereas the one of (-) gamma-HBCD corresponds to (1S,2S,5S,6R,9R,10S). The given structural information allows the unambiguous identification of the six most important HBCD stereoisomers, which typically account for more than 95% of technical HBCDs. In addition, we compared the solid-state conformations of racemic and enantiomerically pure alpha-, beta-, and gamma-HBCDs. In all cases, vicinal dibromides adopted a synclinal (sc) conformation with torsion angles of 69+/-6 degrees. A unique structural motive was common to all examined HBCD solid-state conformations. This conserved structure was described as an extended triple turn consisting of an arrangement of three pairs of synclinal and two antiperiplanar torsion angles.  相似文献   
10.
Current observed as well as projected changes in biodiversity are the result of multiple interacting factors, with land use and climate change often marked as most important drivers. We aimed to disentangle the separate impacts of these two for sets of vascular plant, bird, butterfly and dragonfly species listed as characteristic for European dry grasslands and wetlands, two habitats of high and threatened biodiversity. We combined articulations of the four frequently used SRES climate scenarios and associated land use change projections for 2030, and assessed their impact on population trends in species (i.e. whether they would probably be declining, stable or increasing). We used the BIOSCORE database tool, which allows assessment of the effects of a range of environmental pressures including climate change as well as land use change. We updated the species lists included in this tool for our two habitat types. We projected species change for two spatial scales: the EU27 covering most of Europe, and the more restricted biogeographic region of ‘Continental Europe’. Other environmental pressures modelled for the four scenarios than land use and climate change generally did not explain a significant part of the variance in species richness change. Changes in characteristic bird and dragonfly species were least pronounced. Land use change was the most important driver for vascular plants in both habitats and spatial scales, leading to a decline in 50–100% of the species included, whereas climate change was more important for wetland dragonflies and birds (40–50 %). Patterns of species decline were similar in continental Europe and the EU27 for wetlands but differed for dry grasslands, where a substantially lower proportion of butterflies and birds declined in continental Europe, and 50 % of bird species increased, probably linked to a projected increase in semi-natural vegetation. In line with the literature using climate envelope models, we found little divergence among the four scenarios. Our findings suggest targeted policies depending on habitat and species group. These are, for dry grasslands, to reduce land use change or its effects and to enhance connectivity, and for wetlands to mitigate climate change effects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号