首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
基础理论   8篇
污染及防治   1篇
  2012年   2篇
  2011年   1篇
  2007年   3篇
  2006年   2篇
  1999年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
Invasive species are one of the fastest growing conservation problems. These species homogenize the world's flora and fauna, threaten rare and endemic species, and impose large economic costs. Here, we examine the distribution of 834 of the more than 1000 exotic plant taxa that have become established in California, USA. Total species richness increases with net primary productivity; however, the exotic flora is richest in low-lying coastal sites that harbor large numbers of imperiled species, while native diversity is highest in areas with high mean elevation. Weedy and invasive exotics are more tightly linked to the distribution of imperiled species than the overall pool of exotic species. Structural equation modeling suggests that while human activities, such as urbanization and agriculture, facilitate the initial invasion by exotic plants, exotics spread ahead of the front of human development into areas with high numbers of threatened native plants. The range sizes of exotic taxa are an order of magnitude smaller than for comparable native taxa. The current small range size of exotic species implies that California has a significant "invasion debt" that will be paid as exotic plants expand their range and spread throughout the state.  相似文献   
2.
Successful conservation management requires an understanding of how species respond to intervention. Native and exotic species may respond differently to management interventions due to differences arising directly from their origin (i.e., provenance) or indirectly due to biased representations of different life history types (e.g., annual vs. perennial life span) or phylogenetic lineages among provenance (i.e., native or exotic origin) groups. Thus, selection of a successful management regime requires knowledge of the life history and provenance-bias in the local flora and an understanding of the interplay between species characteristics across existing environmental gradients in the landscape. Here we tested whether provenance, phylogeny, and life span interact to determine species distributions along natural gradients of soil chemistry (e.g., soil nitrogen and phosphorus) in 10 upland prairie sites along a 600-km latitudinal transect running from southern Vancouver Island in British Columbia, Canada, to the Willamette Valley in Oregon, USA. We found that soil nitrate, phosphorus, and pH exerted strong control over community composition. However, species distributions along environmental gradients were unrelated to provenance, life span, or phylogenetic groupings. We then used a greenhouse experiment to more precisely measure the response of common grass species to nitrogen and phosphorus supply. As with the field data, species responses to nutrient additions did not vary as a function of provenance, life span, or phylogeny. Native and exotic species differed strongly in the relationship between greenhouse-measured tolerance of low nutrients and field abundance. Native species with the greatest ability to maintain biomass production at low nutrient supply rates were most abundant in field surveys, as predicted by resource competition theory. In contrast, there was no relationship between exotic-species biomass at low nutrient levels and field abundance. The implications of these findings for management of invasive species are substantial in that they overturn a general belief that reduction of nutrient supplies favors native species. The idiosyncratic nature of species response to nutrients in this study suggests that manipulation of nutrient supplies is unlikely to alter the overall balance between native and exotic species, although it may well be useful to control specific exotic species.  相似文献   
3.
The invasion paradox: reconciling pattern and process in species invasions   总被引:14,自引:0,他引:14  
The invasion paradox describes the co-occurrence of independent lines of support for both a negative and a positive relationship between native biodiversity and the invasions of exotic species. The paradox leaves the implications of native-exotic species richness relationships open to debate: Are rich native communities more or less susceptible to invasion by exotic species? We reviewed the considerable observational, experimental, and theoretical evidence describing the paradox and sought generalizations concerning where and why the paradox occurs, its implications for community ecology and assembly processes, and its relevance for restoration, management, and policy associated with species invasions. The crux of the paradox concerns positive associations between native and exotic species richness at broad spatial scales, and negative associations at fine scales, especially in experiments in which diversity was directly manipulated. We identified eight processes that can generate either negative or positive native-exotic richness relationships, but none can generate both. As all eight processes have been shown to be important in some systems, a simple general theory of the paradox, and thus of the relationship between diversity and invasibility, is probably unrealistic. Nonetheless, we outline several key issues that help resolve the paradox, discuss the difficult juxtaposition of experimental and observational data (which often ask subtly different questions), and identify important themes for additional study. We conclude that natively rich ecosystems are likely to be hotspots for exotic species, but that reduction of local species richness can further accelerate the invasion of these and other vulnerable habitats.  相似文献   
4.
Since the ban on the use of trichloroacetic acid (TCAA) as a herbicide in several countries, TCAA is still found ubiquitously in the environment. The presence of TCAA nowadays is suggested to originate mainly from the atmospheric degradation of tetrachloroethene. Our mass balance calculations indicate that this may be true for the presence of TCAA in the atmosphere. However, our mass balance calculations also provide tentative evidence for the formation of TCAA in soil. If our calculated production fluxes are realistic estimates, a very large source of TCAA in soil has been identified.  相似文献   
5.
Vegetation at the aquatic-terrestrial interface can alter landscape features through its growth and interactions with sediment and fluids. Even similar species may impart different effects due to variation in their interactions and feedbacks with the environment. Consequently, replacement of one engineering species by another can cause significant change in the physical environment. Here we investigate the species-specific ecological mechanisms influencing the geomorphology of U.S. Pacific Northwest coastal dunes. Over the last century, this system changed from open, shifting sand dunes with sparse vegetation (including native beach grass, Elymus mollis), to densely vegetated continuous foredune ridges resulting from the introduction and subsequent invasions of two nonnative grass species (Ammophila arenaria and Ammophila breviligulata), each of which is associated with different dune shapes and sediment supply rates along the coast. Here we propose a biophysical feedback responsible for differences in dune shape, and we investigate two, non-mutually exclusive ecological mechanisms for these differences: (1) species differ in their ability to capture sand and (2) species differ in their growth habit in response to sand deposition. To investigate sand capture, we used a moveable bed wind tunnel experiment and found that increasing tiller density increased sand capture efficiency and that, under different experimental densities, the native grass had higher sand capture efficiency compared to the Ammophila congeners. However, the greater densities of nonnative grasses under field conditions suggest that they have greater potential to capture more sand overall. We used a mesocosm experiment to look at plant growth responses to sand deposition and found that, in response to increasing sand supply rates, A. arenaria produced higher-density vertical tillers (characteristic of higher sand capture efficiency), while A. breviligulata and E. mollis responded with lower-density lateral tiller growth (characteristic of lower sand capture efficiency). Combined, these experiments provide evidence for a species-specific effect on coastal dune shape. Understanding how dominant ecosystem engineers, especially nonnative ones, differ in their interactions with abiotic factors is necessary to better parameterize coastal vulnerability models and inform management practices related to both coastal protection ecosystem services and ecosystem restoration.  相似文献   
6.
Borer ET  Halpern BS  Seabloom EW 《Ecology》2006,87(11):2813-2820
Eutrophication and predator additions and extinctions are occurring in ecosystems worldwide. Although theory predicts that both will strongly alter the distribution of biomass in whole communities, empirical evidence has not been consolidated to quantitatively determine whether these theoretical predictions are generally borne out in real ecosystems. Here we analyze data from two types of trophic cascade studies, predator removals in factorial combination with fertilization and observed productivity gradients, to assess the role of top-down and bottom-up forces in structuring multi-trophic communities and compare results from these analyses to those from an extensive database of trophic cascade studies. We find that herbivore biomass declines and plant biomass increases in the presence of predators, regardless of system productivity. In contrast, while plants are increased by fertilization, this effect does not significantly increase herbivores in either the presence or absence of predators. These patterns are consistent among marine, freshwater, and terrestrial ecosystems and are largely independent of study size and duration. Thus, top-down effects of predation are transferred through more trophic levels than are bottom-up effects of eutrophication, showing strong asymmetry in the direction of control of biomass distribution in communities.  相似文献   
7.
Compensation and the stability of restored grassland communities.   总被引:1,自引:0,他引:1  
The relationship between community diversity and the stability of summed community biomass has been an area of great theoretical and empirical interest in basic ecology. In general, it has been found that the complementary/compensatory dynamics among species that comprise a community can stabilize aggregate measures of community biomass. Although the potential importance of diversity-stability relationships to restoration ecology has been recognized, to date there has been no quantification of the role these relationships play in increasing the persistence of restored communities in the face of altered disturbance regimes, climatic variability, and over the course of succession. In a large-scale experimental restoration of a California grassland community, aggregated abundance of restored grasses was more stable than were the individual species in response to disturbance, drought, and succession. Compensatory dynamics among the restored grass flora increased aggregate stability in response to natural and anthropogenic disturbances. Successful restorations must persist in the face of altered management and disturbance regimes, climactic variability, and over the course of succession. Incorporation of diversity-stability relationships into restoration plans will likely increase restoration success. This case study further demonstrates the relevance of community ecology theory to restoration ecology.  相似文献   
8.
Brandt AJ  Seabloom EW 《Ecology》2012,93(6):1451-1462
The effects of exotic species invasions on biodiversity vary with spatial scale, and documentation of local-scale changes in biodiversity following invasion is generally lacking. Coupling long-term observations of local community dynamics with experiments to determine the role played by exotic species in recruitment limitation of native species would inform both our understanding of exotic impacts on natives at local scales and regional-scale management efforts to promote native persistence. We used field experimentation to quantify propagule and establishment limitation in a suite of native annual forbs in a California reserve, and compared these findings to species abundance trends within the same sites over the past 48 years. Observations at 11 paired sites (inside and outside the reserve) indicated that exotic annual plants have continued to increase in abundance over the past 48 years. This trend suggests the system has not reached equilibrium > 250 years after exotic species began to spread, and 70 years after livestock grazing ceased within the reserve. Long-term monitoring observations also indicated that six native annual forb species went extinct from more local populations than were colonized. To determine the potential role of exotic species in these native plant declines, we added seed of these species into plots adjacent to monitoring sites where plant litter and live grass competition were removed. Experimental results suggest both propagule and establishment limitation have contributed to local declines observed for these native forbs. Recruitment was highest at sites that had current or historical occurrences of the seeded species, and in plots where litter was removed. Grazing history (i.e., location within or outside the reserve) interacted with exotic competition removal, such that removal of live grass competition increased recruitment in more recently grazed sites. Abundance of forbs was positively related to recruitment, while abundance of exotic forbs was negatively related. Thus, exotic competition is likely only one factor contributing to local declines of native species in invaded ecosystems, with a combination of propagule limitation, site quality, and land use history also playing important and interactive roles in native plant recruitment.  相似文献   
9.
Animals can attain fitness benefits by maintaining a positive net energy balance, including costs of movement during resource acquisition and the profits from foraging. Subterranean rodent burrowing provides an excellent system in which to examine the effects of movement costs on foraging behavior because it is energetically expensive to excavate burrows. We used an individual-based modeling approach to study pocket gopher foraging and its relationship to digging cost, food abundance, and food distribution. We used a unique combination of an individual-based foraging-behavior model and an energetic model to assess survival, body mass dynamics, and burrow configurations. Our model revealed that even the extreme cost of digging is not as costly as it appears when compared to metabolic costs. Concentrating digging in the area where food was found, or area-restricted search (ARS), was the most energetically efficient digging strategy compared to a random strategy. Field data show that natural burrow configurations were more closely approximated by the animals we modeled using ARS compared to random diggers. By using behavior and simple physiological principles in our model, we were able to observe realistic body mass dynamics and recreate natural movement patterns.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号