首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
综合类   1篇
基础理论   2篇
污染及防治   1篇
评价与监测   1篇
  2022年   1篇
  2020年   1篇
  2017年   2篇
  2010年   1篇
排序方式: 共有5条查询结果,搜索用时 62 毫秒
1
1.
2.
Environmental Chemistry Letters - Biosensors are gaining interest in biomedical and environmental sciences. In particular, graphene-based biosensors are promising due to the unique properties of...  相似文献   
3.
In this study, a tailor-made biocatalyst consisting of a co-immobilized lignolytic enzyme cascade on multi-functionalized magnetic silica microspheres (MSMS) was developed. Physical adsorption was the most promising strategy for the synthesis of individual immobilized laccase (IL), immobilized versatile peroxidase (IP), as well as co-immobilized laccase (Lac) and versatile peroxidase (VP) with an enzyme activity recovery of about 79, 93, 27, and 27.5%, respectively. Similarly, the biocatalytic load of 116, 183, 23.6, and 31 U/g was obtained for IL, IP, and co-immobilized Lac and VP, respectively. The co-immobilized enzyme system exhibited better pH stability than the free and individual immobilized system by retaining more than 100% residual activity at pH 7.0 after a 150-h incubation; whereas, the thermal stability and kinetics of the co-immobilized biocatalyst were not much improved. IL and IP could be recycled for 10 cycles after which they retained 31 and 44% of their initial activities. Co-immobilized Lac and VP were reused for ten consecutive cycles at the end of which Lac activity was depleted, and 37% of VP activity was left. Free enzymes, IL, IP, co-immobilized Lac, and VP were applied to biorefinery wastewater (BRW) in a batch study to investigate the transformation of phenolic contaminants over a period of 5 days. The major classes of phenolic constituents in terms of their order of removal in a Lac-VP system was phenol >2-chlorophenol > trichlorophenol > dichlorophenol > cresols > dimethylphenol >2 methyl- 4, 6-dinitrophenol > 4-nitrophenol > tetrachlorophenols > pentachlorophenol. The free enzymes and individually immobilized enzymes resulted in 80% dephenolization in 5 days. By contrast, the co-immobilized biocatalyst provided rapid dephenolization yielding the same 80% removal within 24 h and 96% removal of phenols in 60 h after which the system stabilized, which is the major advantage of the co-immobilized biocatalyst.
? Graphical abstract
  相似文献   
4.
Ecosystems are balanced by nature and each component in the system has a role in the sustenance of other components. A change in one component would invariably have an effect on others. Stomatopods (mantis shrimps) are common and ecologically important predatory crustaceans in tropical marine waters. The ecological role of mantis shrimps and potential impacts of trawling in a marine ecosystem were estimated using Ecopath with Ecosim (EwE) Version 5.0 software, by constructing a mass balanced Ecopath model of Parangipettai (Porto Novo) ecosystem. Based on fisheries information from the region, 17 ecological groups were defined including stomatopods. Both primary and secondary data on biomass, P/B, Q/B and diet composition were used as basic inputs. The mass balanced model gave a total system throughput of 14,756 t km−2 year−1. The gross efficiency of 0.000942 indicated higher contribution of lower food chain groups in the fishery though the mean trophic level was 3.08. The immature and developing stage of the ecosystem was indicated by the ratio of total primary production and total respiration (1.832) and the net system production (2643.30 t km−2 year−1). Key indices (flow to detritus, net efficiency and omnivory index), split mortality rates and mixed trophic impact of different ecological groups were obtained from the model. A flow diagram was constructed to illustrate the trophic interactions, which explained the biomass flows in the ecosystem with reference to stomatopods. Two temporal simulations were made, with 10 year durations in the mass balanced Ecopath model by using ecosim routine incorporated in EwE software. The effect of decrease in biomass of stomatopods in the ecosystem was well defined, in the first run with increase in stomatopod fishing mortality, and the group showed a high positive impact on benthopelagic fish biomass increase (129%). The simulation with increase in trawling efforts resulted in the biomass decline of different ecological groups as elasmobranchs to 1%, stomatopods to 2%, crabs and lobsters to 36%, cephalopods to 63%, mackerel to 78%, and shrimps to 89%. Present study warns stomatopod discards and further increase in trawling efforts in the region and it explained the need for ecosystem based fisheries management practices for the sustainability of marine fisheries.  相似文献   
5.
Environmental flows (Eflow, hereafter) are the flows to be maintained in the river for its healthy functioning and the sustenance and protection of aquatic ecosystems. Estimation of Eflow in any river stretch demands consideration of various factors such as flow regime, ecosystem, and health of river. However, most of the Eflow estimation studies have neglected the water quality factor. This study urges the need to consider water quality criterion in the estimation of Eflow and proposes a framework for estimating Eflow incorporating water quality variations under present and hypothetical future scenarios of climate change and pollution load. The proposed framework is applied on the polluted stretch of Yamuna River passing through Delhi, India. Required Eflow at various locations along the stretch are determined by considering possible variations in future water quantity and quality. Eflow values satisfying minimum quality requirements for different river water usage classes (classes A, B, C, and D as specified by the Central Pollution Control Board, India) are found to be between 700 and 800 m3/s. The estimated Eflow values may aid policymakers to derive upstream storage-release policies or effluent restrictions. Generalized nature of this framework will help its implementation on any river systems.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号