首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   0篇
  国内免费   3篇
废物处理   3篇
环保管理   1篇
综合类   5篇
基础理论   1篇
污染及防治   18篇
评价与监测   3篇
社会与环境   2篇
  2022年   2篇
  2021年   2篇
  2020年   1篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   6篇
  2012年   5篇
  2010年   2篇
  2009年   2篇
  2007年   2篇
  2006年   4篇
  2005年   2篇
  2002年   1篇
排序方式: 共有33条查询结果,搜索用时 15 毫秒
1.
Although a number of manufactured nanoparticles are applied for the medical and clinical purposes, the understanding of interaction between nanomaterials and biological systems are still insufficient. Using nematode Caenorhabditis elegans model organism, we here investigated the in vivo toxicity or safety of hydroxylated fullerene nanoparticles known to detoxify anti-cancer drug-induced oxidative damages in mammals. The survival ratio of C. elegans rapidly decreased by the uptake of nanoparticles from their L4 larval stage with resulting in shortened lifespan (20 d). Both reproduction rate and body size of C. elegans were also reduced after exposure to 100 μg mL−1 of fullerol. We found ectopic cell corpses caused by apoptotic cell death in the adult worms grown with fullerol nanoparticles. By the mutation of core pro-apoptotic regulator genes, ced-3 and ced-4, these nanoparticle-induced cell death were significantly suppressed, and the viability of animals consequently increased despite of nanoparticle uptake. The apoptosis-mediated toxicity of nanoparticles particularly led to the disorder of digestion system in the animals containing a large number of undigested foods in their intestine. These results demonstrated that the water-soluble fullerol nanoparticles widely used in medicinal applications have a potential for inducing apoptotic cell death in multicellular organisms despite of their antioxidative detoxifying property.  相似文献   
2.
Most flax (Linum usitatissimum) varieties are described as tolerant to high concentrations of Cd. The aim of the present paper was to better characterize this tolerance, by studying the responses of flax plantlets, cv Hermes, to 18d growth on 0.5mM Cd. In Cd-treated seedlings, the majority of Cd was compartmentalized in the roots. Analysis of other elements showed that only Fe concentration was reduced, while Mn increased. Growth parameters of Cd treated flax were only moderately altered, with similar mass tolerance-indices for roots and shoots. Tissue anatomy was unaffected by treatment. The effect on lipid peroxidation, protein carbonylation and antioxidative activities appeared low but slightly higher in roots. The most important impacts of Cd were, in all organs, cell expansion, cell-wall thickening, pectin cross-linking and increase of cell-wall enzymatic activities (pectin methylesterase and peroxidase). Thus, the role of the cell wall in Cd tolerance might be important at two levels: (i) in the reinforcement of the tissue cohesion and (ii) in the sequestration of Cd.  相似文献   
3.
Environmental Science and Pollution Research - The Hajeb Layoun-Jelma basin, located in the central Tunisia, is the principal source of water supply for Sidi Bouzid and Sfax region. The...  相似文献   
4.
ABSTRACT

The aim of this study was to assess the consequences of human impact on the characteristics of sediments heavy metal concentration, grain size and its influence on the structure of the microbial and meiofaunal community assemblages. A survey was carried out in July 2013 within six sites located in the Bizerte Lagoon (Tunisia), both downstream and upstream of industrial effluents. The highest total sediment metal concentrations were detected in stations located close to the industrial sewage discharge points. In these stations, the lowest densities of the total meiofauna (33?±?13?ind/10?cm?2) and conversely the highest densities of cultivable bacteria that are heavy metal resistant have been reported (16?±?80.34?CFU?g?1). Univariate (ANOVA) and multivariate (MDS/CCA) analyses demonstrate high dissimilarity (0.06) in meiofaunal and bacterial community structures between downstream and upstream industrial sewages. Furthermore, canonical correspondence analysis CCA results indicated that heavy metal sediment contamination promoted bacteria that are resistant to heavy metals, while heterotrophic bacteria supported the development of meiofauna taxa. The results highlight the importance of bacteria/meiofauna interactions, as both meiofaunal and microbial communities give indications of the ecological impact of heavy metal contamination in sediment.  相似文献   
5.
Medium (i.e. 15 years) and long-term (i.e. 20 years) impact of irrigation using secondary-treated municipal wastewater (TWW) was assessed on two agricultural soil samples, denoted by E and G, respectively, in the vicinity of El Hajeb region (Southern Tunisia). Soil pH, electrical conductivity particle size grading, potential risk of salinity, water holding capacity and chemical composition, as well as organic matter content, pathogenic microorganisms and heavy metal concentrations in the TWW-irrigated (E and G) and rainwater-irrigated (T) soils at various depths, were monitored and compared during a 5-year experiment. Our study showed that bacterial abundance is higher in sandy–clayey soil, which has an enhanced ability to retain moisture and nutrients. The high level of bacterial flora in TWW-irrigated soils was significantly (p?<?0.05) correlated (r?=?~0.5) with the high level of OM. Avoidance assays have been used to assess toxic effects generated by hazards in soils. The earthworms gradually avoided the soils from the surface (20 cm) to the depth (60 cm) of the G transect and then the E transect, preferring the T transect. The same behaviour was observed for springtails, but they seem to be less sensitive to the living conditions in transects G and E than the earthworms. The avoidance response test of Eisenia andrei was statistically correlated with soil layers at the sampling sites. However, the avoidance response test of Folsomia candida was positively correlated with silt-clay content (+0.744*) and was negatively correlated with sand content (?0.744*).  相似文献   
6.
The aim of this study was to assess whether soil microbial biomass could be used as an indicator of environmental changes following the application of organic residue (compost of municipal solid waste and farmyard manure) or mineral fertilizers (N and P) into cultivated or uncultivated loam-clayey soil, for three consecutive years. The carbon and nitrogen of the microbial biomass (B(C) and B(N) were studied using the fumigation-extraction method. For the two cultivated and uncultivated plots, B(N) and B(C) were more important in the superficial profile (0-20 cm) than in the deep one (20-40 cm). In the uncultivated soil, we observed a good linear relation between B(C) and B(N) at the level of upper soil horizon during the wet season with r coefficients of 0.95, 0.71 and 0.80 for the consecutive years 2000, 2001 and 2002, respectively. Microbial biomasses C and N increased during the rainy season and decreased during the dry season. Microbial biomass C and N showed the higher content with compost and farmyard manure at 40 tonnes ha(-1). Moreover, the results showed that at the beginning of the experiment, the microbial biomass was higher in the ploughed wheat-cultivated plot than in the uncultivated one. Microbial biomass C and N in the cultivated plot amended with compost at 40 tonnes ha(-1) were significantly different in comparison with the soil microbial biomass amended with farmyard manure. The combining of chemical fertilizer with the organic fertilizer, such as compost at 40 or 80 tonnes ha(-1) and farmyard manure, increased the microbial biomasses C and N after 1 and 2 years. In the cultivated or uncultivated plots the results revealed that the best application rate of the compost was 40 tonnes ha(-1) and when the compost rate was increased from 40 to 80 tonnes ha(-1) both B(C) and B(N) decreased significantly.  相似文献   
7.
This work aimed to study UV-resistant strains of Pseudomonas aeruginosa, to propose a formulation of the kinetics of secondary treated wastewater disinfection and to underline the influence of suspended solids on the inactivation kinetics of these strains. Some investigations were carried out for the validation of some simulation models, from the simplest, the kinetics model of Chick-Watson reduced to first order, to rather complex models such as multi-kinetic and Collins-Selleck models. Results revealed that the involved processes of UV irradiation were too complex to be approached by a simplified formulation, even in the case of specific strains of microorganisms and the use of nearly constant UV radiation intensity. In fact, the application of Chick-Watson model in its original form is not representative of the kinetics of UV disinfection. Modification, taking into account the speed change during the disinfection process, has not significantly improved results. On the other hand, the application of Collins-Selleck model demonstrates that it was necessary to exceed a least dose of critical radiation to start the process of inactivation. To better explain the process of inactivation, we have assumed that the action of disinfectant on the survival of lonely microorganisms is faster than its action on suspended solids protected or agglomerated to each others. We can assume in this case the existence of two inactivation kinetics during the processes (parallel and independent) of the first-order. For this reason, the application of a new kinetic model by introducing a third factor reflecting the influence of suspended solids in water on disinfection kinetics appeared to be determinant for modeling UV inactivation of P. aeruginosa in secondary treated wastewater.  相似文献   
8.
A series of phosphorus-modified titanium dioxide samples with varying P/Ti atomic ratio were conveniently prepared via a conventional solgel route. The effects of phosphorus content and calcination temperature on the crystalline structure, grain growth, surface area, and the photocatalytic activity of P-modified TiO2 were investigated. The XRD results showed that P species slow down the particle growth of anatase and increase the anatase-to-rutile phase transformation temperature to more than 900℃. Kinetic studies on the P-modified TiO2 to degraded 4-chlorophenol had found that the TP5500 prepared by adopting a P/Ti atomic ratio equal to 0.05 and calcined at 500℃ had an apparent rate constant equal to 0.0075 min-1, which is superior to the performance of a commercial photocatalyst Degussa P25 Kapp = 0.0045 min-1 and of unmodified TiO2 (TP0500) Kapp = 0.0022 min-1. From HPLC analyses, various hydroxylated intermediates formed during oxidation had been identified, including hydroquinone (HQ), benzoquinone (BQ) and (4CC) 4-chlorocatechol as main products. Phytotoxicity was assessed before and after irradiation against seed germination of tomato (Lycopersicon esculentum) whereas acute toxicity was assessed by using Folsomia candida as the test organism. Intermediates products were all less toxic than 4-chlorophenol and a significant removal of the overall toxicity was accomplished  相似文献   
9.
Phosphate ions are usually considered to be responsible for the algal bloom in receiving water bodies and aesthetic problems in water. From the environmental point of view, the management of such contaminant and valuable resource is very important. The present work deals with the removal of phosphate ions from aqueous solutions using kaolinitic and smectic clay minerals and synthetic zeolite as adsorbent. The pH effect and adsorption kinetic were studied. It was found that phosphate could be efficiently removed at acidic pH (between 4 and 6) and the second order model of kinetics is more adopted for all samples. The isotherms of adsorption of phosphate ions by the two clays and the zeolite samples show that the zeolite has the highest rate of uptake (52.9 mg P/g). Equilibrium data were well fitted with Langmuir and Freundlich isotherm.  相似文献   
10.
The effect of fish waste (FW), abattoir wastewater (AW) and waste activated sludge (WAS) addition as co-substrates on the fruit and vegetable waste (FVW) anaerobic digestion performance was investigated under mesophilic conditions using four anaerobic sequencing batch reactors (ASBR) with the aim of finding the better co-substrate for the enhanced performance of co-digestion. The reactors were operated at an organic loading rate of 2.46–2.51 g volatile solids (VS) l−1 d−1, of which approximately 90% were from FVW, and a hydraulic retention time of 10 days. It was observed that AW and WAS additions with a ratio of 10% VS enhanced biogas yield by 51.5% and 43.8% and total volatile solids removal by 10% and 11.7%, respectively. However FW addition led to improvement of the process stability, as indicated by the low VFAs/Alkalinity ratio of 0.28, and permitted anaerobic digestion of FVW without chemical alkali addition. Despite a considerable decrease in the C/N ratio from 34.2 to 27.6, the addition of FW slightly improved the gas production yield (8.1%) compared to anaerobic digestion of FVW alone. A C/N ratio between 22 and 25 seemed to be better for anaerobic co-digestion of FVW with its co-substrates. The most significant factor for enhanced FVW digestion performance was the improved organic nitrogen content provided by the additional wastes. Consequently, the occurrence of an imbalance between the different groups of anaerobic bacteria which may take place in unstable anaerobic digestion of FVW could be prevented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号