首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   1篇
  国内免费   32篇
废物处理   1篇
综合类   29篇
基础理论   13篇
污染及防治   15篇
  2021年   1篇
  2019年   4篇
  2018年   1篇
  2017年   3篇
  2016年   1篇
  2015年   2篇
  2014年   3篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   5篇
  2009年   6篇
  2008年   2篇
  2007年   3篇
  2006年   2篇
  2002年   4篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1998年   5篇
  1997年   2篇
  1995年   1篇
  1994年   1篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
排序方式: 共有58条查询结果,搜索用时 15 毫秒
1.
采用序批试验研究了焙烧温度对铁覆膜砂(Iron Oxide Coated Sand,IOGS)吸附6价铬Cr(VI)的吸附平衡和吸附速率的影响.结果表明,铬在IOCS上的吸附平衡符合Langmuir吸附模型.低温制备IOCS具有较高吸附容量且对pH不敏感.110℃制备IOGS在pH 7的最大吸附容量(0.181 mg·g-1)远高于660℃制备10CS(0.023 m8·8-1).吸附过程符合准二级动力学模型.吸附速率随焙烧温度提高而下降.  相似文献   
2.
Economic and highly effective methods of in situ remediation of Cd and As polluted farmland in mining areas are urgently needed. Pot experiments with Brassica chinensis L. were carried out to determine the effects of three soil amendments [a novel iron-silicon material (ISM), a synthetic zeolite (SZ) and an alkaline clay (AC)] on vegetable uptake of As and Cd. SEM–EDS and XRD analyses were used to investigate the remediation mechanisms involved. Amendment with ISM significantly reduced the concentrations of As and Cd in edible parts of B. chinensis (by 84–94 % and 38–87 %, respectively), to levels that met food safety regulations and was much lower than those achieved by SZ and AC. ISM also significantly increased fresh biomass by 169–1412 % and 436–731 % in two consecutive growing seasons, while SZ and AC did not significantly affect vegetable growth. Correlation analysis suggested that it was the mitigating effects of ISM on soil acidity and on As and Cd toxicity, rather than nutrient amelioration, that contributed to the improvement in plant growth. SEM–EDS analysis showed that ISM contained far more Ca, Fe and Mn than did SZ or AC, and XRD analysis showed that in the ISM these elements were primarily in the form of silicates, oxides and phosphates that had high capacities for chemisorption of metal(loid)s. After incubation with solutions containing 800 mg L?1 AsO4 2? or Cd2+, ISM bound distinctly higher levels of As (6.18 % in relative mass percent by EDS analysis) and Cd (7.21 % in relative mass percent by EDS analysis) compared to SZ and AC. XRD analysis also showed that ISM facilitated the precipitation of Cd2+ as silicates, phosphates and hydroxides, and that arsenate combined with Fe, Al, Ca and Mg to form insoluble arsenate compounds. These precipitation mechanisms were much more active in ISM than in SZ or AC. Due to the greater pH elevation caused by the abundant calcium silicate, chemisorption and precipitation mechanisms in ISM treatments could be further enhanced. That heavy metal(loid)s fixation mechanisms of ISM ensure the remediation more irreversible and more resilient to environmental changes. With appropriate application rate and proper nutrients supplement, the readily available and economic ISM is a very promising amendment for safe crop production on multi-metal(loids) polluted soils.  相似文献   
3.
Mechanisms of soil Pb immobilization by Bacillus subtilis DBM, a bacterial strain isolated from a heavy-metal-contaminated soil, were investigated. Adsorption and desorption experiments with living bacterial cells as well as dead cells revealed that both extracellular adsorption and intracellular accumulation were involved in the Pb2+removal from the liquid phase. Of the sequestered Pb(II), 8.5% was held by physical entrapment within the cell wall, 43.3% was held by ion-exchange, 9.7% was complexed with cell surface functional groups or precipitated on the cell surface, and 38.5% was intracellularly accumulated.Complexation of Pb2+with carboxyl, hydroxyl, carbonyl, amido, and phosphate groups was demonstrated by Fourier transform infrared spectroscopic analysis. Precipitates of Pb5(PO4)3OH, Pb5(PO4)3Cl and Pb10(PO4)6(OH)2that formed on the cell surface during the biosorption process were identified by X-ray diffraction analysis. Transmission electron microscopy–energy dispersive spectroscopic analysis confirmed the presence of the Pb(II)precipitates and that Pb(II) could be sequestered both extracellularly and intracellularly.Incubation with B. subtilis DBM significantly decreased the amount of the weak-acid-soluble Pb fraction in a heavy-metal-contaminated soil, resulting in a reduction in Pb bioavailability, but increased the amount of its organic-matter-bound fraction by 71%. The ability of B.subtilis DBM to reduce the bioavailability of soil Pb makes it potentially useful for bacteria-assisted phytostabilization of multi-heavy-metal-contaminated soil.  相似文献   
4.
Fu F  Zeng H  Cai Q  Qiu R  Yu J  Xiong Y 《Chemosphere》2007,69(11):1783-1789
A new dithiocarbamate-type heavy metal precipitant, sodium 1,3,5-hexahydrotriazinedithiocarbamate (HTDC), was prepared and used to remove coordinated copper from wastewater. In the reported dithiocarbamate-type precipitants, HTDC possesses the highest percentage of the effective functional groups. It could effectively precipitate copper to less than 0.5 mg l−1 from both synthetic and actual industrial wastewater containing CuEDTA in the range of pH 3–9. UV–vis spectral investigation and elemental analysis suggested that the precipitate was a kind of coordination supramolecular compound, [Cu3(HTDC)2]n. The toxicity characteristic leaching procedure (TCLP) and semi-dynamic leaching test (SDLT) indicated that the supramolecular precipitate was non-hazardous and stable in weak acid and alkaline conditions. Tests of an anion exchange resin D231 provided a clue to simultaneously remove excess HTDC and residual CuEDTA in practical process of wastewater treatment.  相似文献   
5.
在模拟酸雨条件下土壤盐基离子淋溶特性研究的基础上,采用生成分分析及多元回归分析方法研究了土壤盐基淋溶的影响因子.结果表明,通过主成分分析方法可将选取的15个原始变量综合成为2个主成分,为进一步分析盐基释放量与土壤理化性质之间的关系提供了方便.影响盐基释放量的主要因子有土壤原始pH值、可交换性盐基含量、蒙脱石含量、活性氧化物、1.4nm矿物等,它们表现出效应,而高岭石和可交换性铝含量表现出负效应.利用主成分分析的结果进行多元回归分析,可得到土壤累积盐基释放量与2个主成分之间的回归方程.  相似文献   
6.
蔡信德  仇荣亮 《生态环境》2007,16(6):1705-1709
采用室内盆栽试验方法,研究了外源镍污染土壤的植物吸收修复对土壤镍形态和土壤主要化学性质的影响。试验用水稻土添加NiSO4·6H2O(100~1600mgkg-1)经过12周的驯化培养后,种植了镍超累积植物Alyssu mmurale,110 d后收获植物并进行了试验土壤镍的形态和主要化学性质的分析,采用再分配系数和结合强度系数对植物修复效果进行了定量分析。结果表明,根区土壤中DTPA提取态镍的数量明显减少,根区土壤DTPA-Ni与非根区土壤DTPA-Ni之比的范围在0.33~0.61之间。每盆植物提取镍量为6.61~31.18mg,植物提取量随着添加镍量增加而增加,地上部分最大镍含量达到12454.1mgkg-1。根区的再分配系数在2.17~4.19之间,而非根区的再分配系数在6.87~15.91之间,再分配系数随着镍添加量的增加而增大;根区的结合强度系数为0.84~0.39,而非根区的则为0.88~0.26,随着土壤中镍添加量的增加,结合强度系数逐渐减小。植物吸收修复后,根区土壤镍的再分配系数降低、结合强度系数增大,表明土壤镍各形态之间的稳定性增加,因此植物修复可以加快外源镍在土壤中的稳定。试验结果也表明,根区土壤中pH随着镍添加量的增加呈下降趋势、但较非根区土壤的高;根区土壤有机碳亦较非根区的高。  相似文献   
7.
重金属污染土壤中提高植物提取修复功效的探讨   总被引:20,自引:0,他引:20  
随着对重金属超积累植物研究的加深 ,用植物提取修复技术来改良重金属污染的土壤已逐步进入实用阶段。本文所探讨的提高此技术功效的方法基于两个方面 :提高土壤溶液中重金属的浓度 ,促进植物对重金属的吸收 ;根据已了解的超积累的生理机制可能采取的一些措施  相似文献   
8.
The current acid deposition critical loads in Guangdong, China were calculated using the PROFILE model with a 3 km × 3 km resolution. Calculations were carried out for critical loads of potential acidity, actual acidity, sulfur and nitrogen, with values in extents of 0–3.5, 0–14.0, 0–26.0 and 0–3.5 kmol/(hm2·year), respectively. These values were comparable to previously reported results and reflected the influences of vegetation and soil characteristics on the soil acid buffering capacity. Simulations of S...  相似文献   
9.
Lead and Zn uptake and chemical changes in rhizosphere soils of four emergent-rooted wetland plants; Aneilema bracteatum, Cyperus alternifolius, Ludwigia hyssopifolia and Veronica serpyllifolia were investigated by two experiments: (1) rhizobag filled with “clean” or metal-contaminated soil for analysis of Pb and Zn in plants and rhizosphere soils; and (2) applied deoxygenated solution for analyzing their rates of radial oxygen loss (ROL). The results showed that the wetland plants with di erent ROL rates had significant e ects on the mobility and chemical forms of Pb and Zn in rhizosphere under flooded conditions. These e ects were varied with di erent metal elements and metal concentrations in the soils. Lead mobility in rhizosphere of the four plants both in the “clean” and contaminated soils was decreased, while Zn mobility was increased in the rhizosphere of the “clean” soil, but decreased in the contaminated soil. Among the four plants, V. serpyllifolia, with the highest ROL, formed the highest degree of Fe plaque on the root surface, immobilized more Zn in Fe plaque, and has the highest e ects on the changes of Zn form (EXC-Zn) in rhizosphere under both “clean” and contaminated soil conditions. These results suggested that ROL of wetland plants could play an important role in Fe plaque formation and mobility and chemical changes of metals in rhizosphere soil under flood conditions.  相似文献   
10.
采用温室盆栽实验,研究了在不同剂量(质量分数分别为0、0.10%、0.25%、0.5%和1.0%)石灰石改良条件下,大宝山矿强酸性多金属不同污染程度土壤中麻疯树的生长状况和吸收金属特征,并探讨了麻疯树在酸性土壤中生长的抑制因素和石灰石改良适宜剂量.研究表明,在低污染酸性土壤中,Cu和Pb的高活性可能是抑制麻疯树生长的主要因素;而在高污染酸性土壤中,Cd、Cu、Zn等金属的高活性及由强酸引起的Al毒也可能是抑制麻疯树生长的主要因素;石灰石通过提高土壤pH值和降低多金属的生物有效态含量,促进了麻疯树在低污和高污土壤中的生长,其最佳剂量分别为0.25%和0.5%;石灰石可以不同程度地降低麻疯树地上部和地下舔的Cd、Cu、Pb、Zn和Al含量,同时随石灰石用量的增加,其金属含量基本呈降低趋势;麻疯树地下部金属含量高于地上部,且石灰石对麻疯树地下部金属(除Cd外)含量降低幅度较地上部大.因此,种植麻疯树与石灰石改良是联合修复大宝山矿酸性多金属污染土壤的有效措施之一.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号