首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15672篇
  免费   112篇
  国内免费   109篇
安全科学   329篇
废物处理   674篇
环保管理   1595篇
综合类   4302篇
基础理论   3388篇
环境理论   9篇
污染及防治   3874篇
评价与监测   929篇
社会与环境   721篇
灾害及防治   72篇
  2022年   153篇
  2021年   142篇
  2018年   234篇
  2017年   202篇
  2016年   330篇
  2015年   243篇
  2014年   378篇
  2013年   1038篇
  2012年   448篇
  2011年   570篇
  2010年   465篇
  2009年   529篇
  2008年   590篇
  2007年   673篇
  2006年   561篇
  2005年   459篇
  2004年   466篇
  2003年   481篇
  2002年   415篇
  2001年   506篇
  2000年   387篇
  1999年   279篇
  1998年   173篇
  1997年   176篇
  1996年   140篇
  1995年   204篇
  1994年   199篇
  1993年   155篇
  1992年   156篇
  1991年   185篇
  1990年   157篇
  1989年   160篇
  1988年   160篇
  1987年   128篇
  1985年   128篇
  1984年   142篇
  1983年   137篇
  1982年   147篇
  1981年   114篇
  1980年   116篇
  1979年   134篇
  1978年   115篇
  1977年   110篇
  1974年   110篇
  1967年   113篇
  1965年   121篇
  1964年   111篇
  1963年   113篇
  1961年   118篇
  1957年   115篇
排序方式: 共有10000条查询结果,搜索用时 468 毫秒
1.
Environmental Science and Pollution Research - In this work, it was analyzed the behavior of three commercial activated carbons with different textural and chemical properties to adsorb...  相似文献   
2.
Environmental Science and Pollution Research - A current environmental problem is the uncontrolled use of various pesticides that are harmful to the environment and public health. The herbicide...  相似文献   
3.
Nano-ZnO-chitosan bio-composite beads were prepared for the sorption of \({\text{UO}}_{2}^{{2+}}\) from aqueous media. The resulting nano-ZnO/CTS bio-composite beads were characterized by TEM, XRD etc. The sorption of \({\text{UO}}_{2}^{{2+}}\) by bio-composite beads was optimized using RSM. The correlation between four variables was modelled and studied. According to RSM data, correlation coefficients (R2?=?0.99) and probability F-values (F?=?2.24?×?10??10) show that the model fits the experimental data well. Adsorption capacity for nano-ZnO/CTS bio-composite beads was obtained at 148.7 mg/g under optimum conditions. The results indicate that nano-ZnO/CTS bio-composite beads are appropriate for the adsorption of \({\text{UO}}_{2}^{{2+}}\) ions from aqueous media. Also, the suitability of adsorption values to adsorption isotherms was researched and thermodynamic data were calculated.  相似文献   
4.
Reservoirs have a wide variety of uses that have led to frequent conflicts over ecological conservation and contamination, especially as land management has intensified. Oligotrophication must be implemented in numerous tropical reservoirs that experience advanced eutrophication to maintain aquatic ecosystem functions. To quantify impacts on ecosystem functions and to develop an adaptive management policy, multiple studies have been conducted on the Itaparica Reservoir, São Francisco River, in the semi-arid north-eastern region of Brazil. Here, we add to that existing body of knowledge through investigating how nutrient accumulation is affected by water exchange between the main river flow and Icó-Mandantes Bay. Operational water-level fluctuations in the reservoir create large desiccated littoral areas that release high amounts of nutrients when they are rewetted. In particular, water-level variation promotes proliferation of Egeria densa, a noxious weed, thus elevating trophic levels of the Itaparica Reservoir and Icó-Mandantes Bay. Analysis with a P efficiency model determined 25 μg P L?1 to be the critical concentration and further indicated that the critical load in both bodies of water have been exceeded. Moreover, intensive fish aquaculture using net cages has led to further overtaxing of the reservoir. We conclude that an effective ecological reservoir management policy must involve oligotrophication, harvesting of noxious water weeds for use as soil amendment in agriculture or biogas production, “blue” aquaculture, and limiting hydroelectric power production based on current water availability.  相似文献   
5.
Weather variability has the potential to influence municipal water use, particularly in dry regions such as the western United States (U.S.). Outdoor water use can account for more than half of annual household water use and may be particularly responsive to weather, but little is known about how the expected magnitude of these responses varies across the U.S. This nationwide study identified the response of municipal water use to monthly weather (i.e., temperature, precipitation, evapotranspiration [ET]) using monthly water deliveries for 229 cities in the contiguous U.S. Using city‐specific multiple regression and region‐specific models with city fixed effects, we investigated what portion of the variability in municipal water use was explained by weather across cities, and also estimated responses to weather across seasons and climate regions. Our findings indicated municipal water use was generally well‐explained by weather, with median adjusted R2 ranging from 63% to 95% across climate regions. Weather was more predictive of water use in dry climates compared to wet, and temperature had more explanatory power than precipitation or ET. In response to a 1°C increase in monthly maximum temperature, municipal water use was shown to increase by 3.2% and 3.9% in dry cities in winter and summer, respectively, with smaller changes in wet cities. Quantifying these responses allows urban water managers to plan for weather‐driven variability in water use.  相似文献   
6.
Brazil hosts the largest expanse of tropical ecosystems within protected areas (PAs), which shelter biodiversity and support traditional human populations. We assessed the vulnerability to climate change of 993 terrestrial and coastal-marine Brazilian PAs by combining indicators of climatic-change hazard with indicators of PA resilience (size, native vegetation cover, and probability of climate-driven vegetation transition). This combination of indicators allows the identification of broad climate-change adaptation pathways. Seventeen PAs (20,611 km2) were highly vulnerable and located mainly in the Atlantic Forest (7 PAs), Cerrado (6), and the Amazon (4). Two hundred fifty-eight PAs (756,569 km2), located primarily in Amazonia, had a medium vulnerability. In the Amazon and western Cerrado, the projected severe climatic change and probability of climate-driven vegetation transition drove vulnerability up, despite the generally good conservation status of PAs. Over 80% of PAs of high or moderate vulnerability are managed by indigenous populations. Hence, besides the potential risks to biodiversity, the traditional knowledge and livelihoods of the people inhabiting these PAs may be threatened. In at least 870 PAs, primarily in the Atlantic Forest and Amazon, adaptation could happen with little or no intervention due to low climate-change hazard, high resilience status, or both. At least 20 PAs in the Atlantic Forest, Cerrado, and Amazonia should be targeted for stronger interventions (e.g., improvement of ecological connectivity), given their low resilience status. Despite being a first attempt to link vulnerability and adaptation in Brazilian PAs, we suggest that some of the PAs identified as highly or moderately vulnerable should be prioritized for testing potential adaptation strategies in the near future.  相似文献   
7.
This study evaluated the hydrolysis and photolysis kinetics of pyraclostrobin in an aqueous solution using ultra-high-performance liquid chromatography–photodiode array detection and identified the resulting metabolites of pyraclostrobin by hydrolysis and photolysis in paddy water using high-resolution mass spectrometry coupled with liquid chromatography. The effect of solution pH, metal ions and surfactants on the hydrolysis of pyraclostrobin was explored. The hydrolysis half-lives of pyraclostrobin were 23.1–115.5?days and were stable in buffer solution at pH 5.0. The degradation rate of pyraclostrobin in an aqueous solution under sunlight was slower than that under UV photolysis reaction. The half-lives of pyraclostrobin in a buffer solution at pH 5.0, 7.0, 9.0 and in paddy water were less than 12?h under the two light irradiation types. The metabolites of the two processes were identified and compared to further understand the mechanisms underlying hydrolysis and photolysis of pyraclostrobin in natural water. The extracted ions obtained from paddy water were automatically annotated by Compound Discoverer software with manual confirmation of their fragments. Two metabolites were detected and identified in the pyraclostrobin hydrolysis, whereas three metabolites were detected and identified in the photolysis in paddy water.  相似文献   
8.
9.
An intermediate bulk container (IBC) was punctured during its handling, releasing a refined oil product onto land at a large construction site in an environmentally sensitive region of Australia. Understanding and controlling the risks from fuel, oil, and chemical spills on the current project was of critical importance as part of the project's overall approval, and ongoing compliance depended on the project committing to minimizing all chemical and petroleum hydrocarbon spills on the site. The telehandler (forklift) did not pierce the plastic of the IBC directly (as was expected to be the case) but rather one of the tynes caught on the underside of the metal base plate (pallet belly plate), despite numerous controls being in place at the time of spill (to limit the risks of damaging the IBC), revealing a previously unreported mechanism for a fluid spill from handling of petroleum hydrocarbons and related chemicals. The investigation team used a root cause analysis (RCA) technique, based on the fishbone (Ishikawa) diagram, which was undertaken with 12 expert contributors (from the project) to identify the underlying cause: The inspection process was inadequate. This study is a companion to the article published in Winter 2014 in Remediation (Guerin, 2014) covering multiple causes of spills from plant and equipment commonly used on construction and remediation projects. ©2015 Wiley Periodicals, Inc.  相似文献   
10.
A modified quick, easy, cheap, effective, rugged and safe (QuEChERS) method was developed for the determination of thiamethoxam and its metabolite clothianidin in citrus (including the whole citrus, peel and pulp) and soil samples by liquid chromatography-tandem mass spectrometry. The sample was extracted with acetonitrile and purified with octadecylsilane. The detection limits of both compounds were 0.0001–0.0002?mg kg–1, while the limit of quantification of thiamethoxam was 0.002?mg kg–1 and the limit of quantitation of metabolites was 0.001?mg kg–1. The recovery was 70.37%–109.76%, with inter-day relative standard deviations (RSD) (n?=?15) values ≤9.46% for the two compounds in the four matrices. The degradation curve of thiamethoxam in whole citrus and soil was plotted using the first-order kinetic model. The half-life of the whole citrus was 1.9–6.2?days, and the half-life of the soil was 3.9–4.2?days. The terminal residue of thiamethoxam (the sum of thiamethoxam and clothianidin, expressed as thiamethoxam) was found to be concentrated on the peel. The final residual amount of thiamethoxam in the edible portion (pulp) was less than 0.061?mg kg–1. The risk quotient values were all below 1, indicating that thiamethoxam as a citrus insecticide does not pose a health risk to humans at the recommended dosage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号