首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   269篇
  免费   4篇
  国内免费   1篇
安全科学   14篇
废物处理   13篇
环保管理   55篇
综合类   31篇
基础理论   56篇
污染及防治   55篇
评价与监测   15篇
社会与环境   26篇
灾害及防治   9篇
  2023年   3篇
  2022年   3篇
  2021年   3篇
  2020年   2篇
  2019年   4篇
  2018年   4篇
  2017年   4篇
  2016年   13篇
  2015年   4篇
  2014年   8篇
  2013年   23篇
  2012年   16篇
  2011年   8篇
  2010年   12篇
  2009年   17篇
  2008年   20篇
  2007年   11篇
  2006年   9篇
  2005年   13篇
  2004年   11篇
  2003年   9篇
  2002年   2篇
  2001年   11篇
  2000年   8篇
  1999年   2篇
  1998年   3篇
  1997年   4篇
  1996年   2篇
  1995年   3篇
  1994年   3篇
  1993年   2篇
  1992年   4篇
  1991年   8篇
  1990年   2篇
  1989年   3篇
  1987年   2篇
  1985年   2篇
  1984年   1篇
  1982年   2篇
  1980年   3篇
  1979年   3篇
  1978年   1篇
  1977年   1篇
  1975年   2篇
  1972年   2篇
  1970年   1篇
排序方式: 共有274条查询结果,搜索用时 15 毫秒
1.
Although animal personality research may have applied uses, this suggestion has yet to be evaluated by assessing empirical studies examining animal personality and conservation. To address this knowledge gap, we performed a systematic review of the peer-reviewed literature relating to conservation science and animal personality. Criteria for inclusion in our review included access to full text, primary research articles, and relevant animal conservation or personality focus (i.e., not human personality studies). Ninety-two articles met these criteria. We summarized the conservation contexts, testing procedures (including species and sample size), analytical approach, claimed personality traits (activity, aggression, boldness, exploration, and sociability), and each report's key findings and conservation-focused suggestions. Although providing evidence for repeatability in behavior is crucial for personality studies, repeatability quantification was implemented in only half of the reports. Nonetheless, each of the 5 personality traits were investigated to some extent in a range of conservations contexts. The most robust studies in the field showed variance in how personality relates to other ecologically important variables across species and contexts. Moreover, many studies were first attempts at using personality for conservation purposes in a given study system. Overall, it appears personality is not yet a fully realized tool for conservation. To apply personality research to conservation problems, we suggest researchers think about where individual differences in behavior may affect conservation outcomes in their system, assess where there are opportunities for repeated measures, and follow the most current methodological guides on quantifying personality.  相似文献   
2.
Working rangelands and natural areas span diverse ecosystems and face both ecological and economic threats from weed invasion. Restoration practitioners and land managers hold a voluminous cache of place-based weed management experience and knowledge that has largely been untapped by the research community. We surveyed 260 California rangeland managers and restoration practitioners to investigate invasive and weedy species of concern, land management goals, perceived effectiveness of existing practices (i.e., prescribed fire, grazing, herbicide use, and seeding), and barriers to practice implementation. Respondents identified 196 problematic plants, with yellow starthistle (Centaurea solstitialis L.) and medusahead (Elymus caput-medusae L.) most commonly listed. Reported adoption and effectiveness of weed management practices varied regionally, but the most highly rated practice in general was herbicide use; however, respondents identified considerable challenges including nontarget effects, cost, and public perception. Livestock forage production was the most commonly reported management goals (64% of respondents), and 25% of respondents were interested in additional information on using grazing to manage invasive and weedy species; however, 19% of respondents who had used grazing for weed management did not perceive it to be an effective tool. Across management practices, we also found common barriers to implementation, including operational barriers (e.g., permitting, water availability), potential adverse impacts, actual effectiveness, and public perception. Land manager and practitioner identified commonalities of primary weeds, management goals, perceived practice effectiveness, and implementation barriers across diverse bioregions highlight major needs that could be immediately addressed through management–science partnerships across the state’s expansive rangelands and natural areas.  相似文献   
3.
This paper provides an overview of a collaborative study on visualizing climate change at the local scale. A conceptual framework has been developed, in which local scenarios and visualizations of climate change impacts and response were created to facilitate local dialogue on incorporating climate change into long-term planning and implementation of community development decisions. As part of a larger effort to generate a new integrated participatory visioning process, this paper describes a case study of the District of North Vancouver which created visualizations of changing mountain snow and landscape conditions, and provides new insights on issues and dilemmas in using realistic landscape visualizations to depict scientific modelling projections, local responses to climate change, and uncertainty. Results from this study suggest that the visualizations, and subsequent dialogue sessions, did influence emotional response to climate change as well as self-assessed understanding of adaptation and mitigation response options. However, there is a need to test this visioning process with larger heterogeneous groups of participants in order to better assess its effectiveness in enabling dialogue on local responses to climate change.  相似文献   
4.
Direct decomposition of N2O by perovskite-structure catalysts including La2NiO4, LaSrNiO4, and La0.7Ce0.3SrNiO4 was investigated. The catalysts were prepared by the Pechini method and characterized by x-ray diffraction (XRD), BET, scanning electron microscopy (SEM), and O2-TPD. Experimental results indicate that the properties of La2NiO4 are significantly improved by partially substituting La with Sr and Ce. N2O decomposition efficiencies achieved with LaSrNiO4 and La0.7Ce0.3SrNiO4 are 44 and 36%, respectively, at 400ºC. As the temperature was increased to 600ºC, N2O decomposition efficiency achieved with LaSrNiO4 and La0.7Ce0.3SrNiO4 reached 100% at an inlet N2O concentration of 1,000 ppm, while the space velocity was fixed at 8,000 hr?1. In addition, effects of various parameters including oxygen, water vapor, and space velocity were also explored. The results indicate that N2O decomposition efficiencies achieved with LaSrNiO4 and La0.7Ce0.3SrNiO4 are not significantly affected as space velocity is increased from 8,000 to 20,000 hr?1, while La0.7Ce0.3SrNiO4 shows better tolerance for O2 and H2O(g). On the other hand, N2 yield with LaSrNiO4 as catalyst can be significantly improved by doping Ce. At a gas hour space velocity of 8,000 hr?1, and a temperature of 600ºC, high N2O decomposition efficiency and N2 yield were maintained throughout the durability test of 60 hr, indicating the long-term stability of La0.7Ce0.3SrNiO4 for N2O decomposition.
Implications:Nitrous oxide (N2O) not only has a high global warming potential (GWP100 = 310), but also potentially destroys ozone in the stratosphere. Pervoskite-type catalysts including La2NiO4, LaSrNiO4, and La0.7Ce0.3SrNiO4 are applied for direct N2O decomposition. The results show that N2O decomposition can be enhanced as Sr and Ce are doped into La2NiO4. At 600ºC, N2O decomposition efficiencies achieved with LaSrNiO4 and La0.7Ce0.3SrNiO4 reach 100%, demonstrating high activity and good potential for direct N2O decomposition. Effects of O2 and H2O(g) contents on catalytic activities are also evaluated and discussed.  相似文献   
5.
Sensors and enabling technologies are becoming increasingly important tools for water quality monitoring and associated water resource management decisions. In particular, nutrient sensors are of interest because of the well‐known adverse effects of nutrient enrichment on coastal hypoxia, harmful algal blooms, and impacts to human health. Accurate and timely information on nutrient concentrations and loads is integral to strategies designed to minimize risk to humans and manage the underlying drivers of water quality impairment. Using nitrate sensors as the primary example, we highlight the types of applications in freshwater and coastal environments that are likely to benefit from continuous, real‐time nutrient data. The concurrent emergence of new tools to integrate, manage, and share large datasets is critical to the successful use of nutrient sensors and has made it possible for the field of continuous monitoring to rapidly move forward. We highlight several near‐term opportunities for federal agencies, as well as the broader scientific and management community, that will help accelerate sensor development, build and leverage sites within a national network, and develop open data standards and data management protocols that are key to realizing the benefits of a large‐scale, integrated monitoring network. Investing in these opportunities will provide new information to guide management and policies designed to protect and restore our nation's water resources.  相似文献   
6.
Small body size is generally correlated with r‐selected life‐history traits, including early maturation, short‐generation times, and rapid growth rates, that result in high population turnover and a reduced risk of extinction. Unlike other classes of vertebrates, however, small freshwater fishes appear to have an equal or greater risk of extinction than large fishes. We explored whether particular traits explain the International Union for Conservation of Nature (IUCN) Red List conservation status of small‐bodied freshwater fishes from 4 temperate river basins: Murray‐Darling, Australia; Danube, Europe; Mississippi‐Missouri, North America; and the Rio Grande, North America. Twenty‐three ecological and life‐history traits were collated for all 171 freshwater fishes of ≤120 mm total length. We used generalized linear mixed‐effects models to assess which combination of the 23 traits best explained whether a species was threatened or not threatened. We used the best models to predict the probability of 29 unclassified species being listed as threatened. With and without controlling for phylogeny at the family level, small body size—among small‐bodied species—was the most influential trait correlated with threatened species listings. The k‐folds cross‐validation demonstrated that body size and a random effect structure that included family predicted the threat status with an accuracy of 78% (SE 0.5). We identified 10 species likely to be threatened that are not listed as such on the IUCN Red List. Small body size is not a trait that provides universal resistance to extinction, particularly for vertebrates inhabiting environments affected by extreme habitat loss and fragmentation. We hypothesize that this is because small‐bodied species have smaller home ranges, lower dispersal capabilities, and heightened ecological specialization relative to larger vertebrates. Trait data and further model development are needed to predict the IUCN conservation status of the over 11,000 unclassified freshwater fishes, especially those under threat from proposed dam construction in the world's most biodiverse river basins.  相似文献   
7.
A former bulk fuel terminal in North Carolina is a groundwater phytoremediation demonstration site where 3,250 hybrid poplars, willows, and pine trees were planted from 2006 to 2008 over approximately 579,000 L of residual gasoline, diesel, and jet fuel. Since 2011, the groundwater altitude is lower in the area with trees than outside the planted area. Soil‐gas analyses showed a 95 percent mass loss for total petroleum hydrocarbons (TPH) and a 99 percent mass loss for benzene, toluene, ethylbenzene, and xylenes (BTEX). BTEX and methyl tert‐butyl ether concentrations have decreased in groundwater. Interpolations of free‐phase, fuel product gauging data show reduced thicknesses across the site and pooling of fuel product where poplar biomass is greatest. Isolated clusters of tree mortalities have persisted in areas with high TPH and BTEX mass. Toxicity assays showed impaired water use for willows and poplars exposed to the site's fuel product, but Populus survival was higher than the willows or pines on‐site, even in a noncontaminated control area. All four Populus clones survived well at the site. © 2014 Wiley Periodicals, Inc.*  相似文献   
8.
Recent catastrophic floods in Viet Nam have been increasingly linked to land use and forest cover change in the uplands. Despite the doubts that many scientists have expressed on such nexus, this common view prompted both positive forest protection/reforestation programs and often-unwarranted blame on upland communities for their forest management practices. This study discusses the disparity between public perceptions and scientific evidences relating the causes of catastrophic floods. The former was drawn on the results of a questionnaire and focus groups discussions with key informants of different mountainous communities, whereas the latter was based on GIS and remote sensing analysis of land cover change, including a statistical analysis of hydro-meteorological data of the Huong river basin in Viet Nam. Results indicate that there is a gap between the common beliefs and the actual relationship between the forest cover change and catastrophic floods. Undeniably, the studied areas showed significant changes in land cover over the period 1989–2008, yet, 71% of the variance of catastrophic flood level in the downstream areas appeared related to variance in rainfall. Evidences from this study showed that the overall increasing trends of catastrophic flooding in the Huong river basin was mainly due to climate variability and to the development of main roads and dyke infrastructures in the lowlands. Forest management policies and programs, shaped on the common assumption that forest degradation in the upland is the main cause of catastrophic flood in the downstream areas, should be reassessed to avoid unnecessary strain on upland people.  相似文献   
9.
Indiscriminate release of metal oxide nanoparticles (NPs) into the environment due to anthropogenic activities has become a serious threat to the ecological system including plants. The present study assesses the toxicity of nano-CuO on rice (Oryza sativa cv. Swarna) seedlings. Three different levels of stress (0.5 mM, 1.0 mM and 1.5 mM suspensions of copper II oxide, <50 nm particle size) were imposed and seedling growth performance was studied along control at 7 and 14 d of experiment. Modulation of ascorbate–glutathione cycle, membrane damage, in vivo ROS detection, foliar H2O2 and proline accumulation under nano-CuO stress were investigated in detail to get an overview of nano-stress response of rice. Seed germination percentage was significantly reduced under stress. Higher uptake of Evans blue by nano-CuO stressed roots over control indicates loss of root cells viability. Presence of dark blue and deep brown spots on leaves evident after histochemical staining with NBT and DAB respectively indicate severe oxidative burst under nano-copper stress. APX activity was found to be significantly increased in 1.0 and 1.5 mM CuO treatments. Nevertheless, elevated APX activity might be insufficient to scavenge all H2O2 produced in excess under nano-CuO stress. That may be the reason why stressed leaves accumulated significantly higher H2O2 instead of having enhanced APX activity. In addition, increased GR activity coupled with isolated increase in GSH/GSSG ratio does not seem to prevent cells from oxidative damages, as evident from higher MDA level in leaves of nano-CuO stressed seedlings over control. Enhanced proline accumulation also does not give much protection against nano-CuO stress. Decline in carotenoids level might be another determining factor of meager performance of rice seedlings in combating nano-CuO stress induced oxidative damages.  相似文献   
10.
Low impact development best management practices (LID-BMPs) are considered to be cost-effective measures for mitigating the water quantity and quality impact of urban runoff. Currently, there are many types of LID-BMPs, and each type has its own intrinsic technical and/or economical characteristics and limitations for implementation. The selection of the most appropriate BMP type(s) for a specific installation site is therefore a very important planning step. In the present study, a multi-criteria selection index system (MCIS) for LID-BMP planning was developed. The selection indexes include 12 first-level indices and 26 second-level indices which reflect the specific installation site characteristics pertaining to site suitability, runoff control performance, and economics of implementation. A mechanism for ranking the BMPs was devised. First, each individual second-level index was assigned a numeric value that was based on site characteristics and information on LID-BMPs. The quantified indices were normalized and then integrated to obtain the score for each of the first-level index. The final evaluation scores of each LID-BMP were then calculated based on the scores for the first-level indices. Finally, the appropriate BMP types for a specific installation site were determined according to the rank of the final evaluation scores. In order to facilitate the application of the MCIS BMP ranking system, the computational process has been coded into a software program, BMPSELEC. A case study demonstrating the MCIS methodology, using an LID-BMP implementation planning at a college campus in Foshan, Guangdong Province, is presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号