首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
环保管理   1篇
基础理论   2篇
污染及防治   10篇
  2021年   1篇
  2017年   2篇
  2014年   1篇
  2012年   1篇
  2011年   2篇
  2006年   4篇
  2005年   1篇
  2003年   1篇
排序方式: 共有13条查询结果,搜索用时 31 毫秒
1.
Crops grown in metal-rich serpentine soils are vulnerable to phytotoxicity. In this study, Gliricidia sepium (Jacq.) biomass and woody biochar were examined as amendments on heavy metal immobilization in a serpentine soil. Woody biochar was produced by slow pyrolysis of Gliricidia sepium (Jacq.) biomass at 300 and 500 °C. A pot experiment was conducted for 6 weeks with tomato (Lycopersicon esculentum L.) at biochar application rates of 0, 22, 55 and 110 t ha?1. The CaCl2 and sequential extractions were adopted to assess metal bioavailability and fractionation. Six weeks after germination, plants cultivated on the control could not survive, while all the plants were grown normally on the soils amended with biochars. The most effective treatment for metal immobilization was BC500-110 as indicated by the immobilization efficiencies for Ni, Mn and Cr that were 68, 92 and 42 %, respectively, compared to the control. Biochar produced at 500 °C and at high application rates immobilized heavy metals significantly. Improvements in plant growth in biochar-amended soil were related to decreasing in metal toxicity as a consequence of metal immobilization through strong sorption due to high surface area and functional groups.  相似文献   
2.
Hseu ZY 《Chemosphere》2006,63(5):762-771
Phytotoxicity of heavy metal is the primary concern in applying biosolids (sewage sludge) to agricultural land. This study evaluates the changes in chemical speciation of Zn in three tropical soils of Taiwan measured with sequential extraction over a one-year period. Biosolids were applied to the soils at application rates of 10, 50 and 100 Mg ha(-1), and correlated diethylene triamine pentaacetic acid (DTPA) and sequential extraction as extract for prediction of Zn bioavailability to Chinese cabbage (Brassica chinensis L.). Experimental results indicated that the exchangeable (F1) and Fe-Mn oxide (F3) fractions in the sequential extractions increased with application rate of biosolids in the soils over time. Large amounts of Zn in the soils following the cessation of biosolids application were identified as soluble and were adsorbed by Fe-Mn oxides. The organically bound Zn, which is associated with readily decomposable carbon, is in limited amounts in the biosolid-treated soils. The DTPA-extractable concentrations of Zn in all biosolid-treated soils decreased over the time. A positive and significant correlation (r(2) = 0.96) was found between the Zn concentrations extracted with DTPA and sum of F1 and carbonate-bound (F2) fractions in the sequential extractions. Additionally, the concentrations of Zn extracted with DTPA were strongly correlated with the concentrations of Zn in the shoots of Chinese cabbages, indicating that F1+F2 in the sequential extractions was reliable for predicting Zn bioavailability to Chinese cabbage in the biosolid-treated soils.  相似文献   
3.
Lin YJ  Liu HC  Hseu ZY  Wu WJ 《Chemosphere》2006,64(4):565-573
This study was designed to investigate the transportation, distribution, and bioaccumulation of PCBs in various environmental media and compartments using an ecologically simulated growth chamber. Spatial and temporal trends of PCBs in the growth chamber were discussed. The release of PCB congeners in soil was affected by the amount of rainfall with the transporting direction moving away from PCBs contaminated point. Two pathways of PCBs accumulation in plants were the uptake of roots and the deposition on shoots/leaves. There were 29 PCB congeners been found in the lalang grass. Higher concentrations of lower chlorinated PCBs were identified than higher chlorinated PCBs because of relatively higher vapor pressure for lower chlorinated congeners. After 10months of monitoring, PCBs were detected in water samples which were contributed by the release of PCBs from leached soil. Analysis of sediment showed that the percentages of low- and mid-chlorinated biphenyls were decreased 1% and 13%, respectively compared to the increase (14%) of high-chlorinated biphenyls. The increase of high-chlorinated PCBs was possibly caused by their low hydrophilicity which had resulted higher adsorption rate in sediment. All of five species of fish had been found significant amount of PCBs accumulation ( summation operatorPCBs: 21.7-102.1 microg/g-lipid). The concentrations of PCBs in fish were varied significantly among species. The range of bioaccumulation factors (BAFs) among different species of fish could be as much as 5 times depending on the consumption habits of fish. The mass balance of PCBs distribution in the growth chamber was also discussed.  相似文献   
4.
Kao PH  Huang CC  Hseu ZY 《Chemosphere》2006,64(1):63-70
Application of biosolid on land has been widespread in numerous countries for last several decades. This study performed incubation experiments by mixing a neutral loamy soil and biosolid enriched in Cu, Pb and Zn to explore how heavy metal affects soil mineralization and microbial biomass. The experimental results indicated that large nutrient, microorganism and C sources from biosolid were beneficial to microbial respiration. However, compared to the biosolid alone treatment, the supplemented Cu, Pb and Zn in biosolid reduced the mineralized C by roughly 36%. This phenomenon was probably caused by a portion of the Cu, Pb and Zn being complexed with organic matter to prevent decomposition of organic carbon by microorganisms. Equally, soil treated with biosolid increased the quantity of mineralized N by approximately five-fold and accelerated the rate of N mineralization by about one-fold compared to untreated soil. Notably, addition of heavy metals impaired the mineralization process, particularly when Pb reached about 64%. The reduced N mineralization occurred for similar reasons to the microbial respiration. The addition of biosolid in soil considerably increased the amount of mineralizable N; however, the increase was lower in biosolid-treated soil spiked by heavy metals. The addition of heavy metals in the soil-biosolid mixture clearly reduced the microbial biomasses C (MBC) and N (MBN), indicating that the microbial activities had been disrupted by the heavy metals. The microbial biomass C/N ratio had changed initially from 8 to 13 at the end of incubation period, owing to various groups of microbes expressing different mechanisms of metabolism, indicating that the microbial population had changed from bacteria to fungi, which had higher metal tolerance.  相似文献   
5.
Hsu WM  Hsi HC  Huang YT  Liao CS  Hseu ZY 《Chemosphere》2012,86(6):606-613
The accumulation of As in rice due to groundwater irrigation in paddy fields represents a serious health hazard in South and Southeast Asia. In Taiwan, the fate of As in long-term irrigated paddy fields is poorly understood. Groundwater, surface soil, and rice samples were collected from a paddy field that was irrigated with As-containing groundwater in southwestern Taiwan. The purpose of this study is to elucidate the source and sink of As in the paddy field by comparing the As fractions in the soils that were obtained by a sequential extraction procedure (SEP) with the As uptake of rice. The risks associated with eating rice from the field can thus be better understood. The concentration of As in groundwater varied with time throughout the growing seasons of rice, but always exceeded the permitted maximum (10 μg L−1) for drinking water by the WHO. The As concentration increased with the concentration of Fe in the groundwater, supporting the claim that a large amount of As was concentrated in the Fe flocs collected from the internal wall of the groundwater pump. The results of the SEP revealed that As bound with amorphous and crystalline hydrous oxides exhibited high availability in the soils. The root of rice accumulated the largest amount of As, followed by the straw, husk, and grain. Although the As concentration in the rice grain was less than 1.0 mg kg−1, the estimated intake level was close to the maximum tolerable daily intake of As, as specified by the WHO.  相似文献   
6.
Hseu ZY  Huang CC 《Chemosphere》2005,59(3):447-454
This study attained anaerobic biosolids (DS) and aerobic biosolids (MS) from the wastewater treatment plants in Kaohsiung and Taipei, Taiwan. Three tropical soils (Lt, Cp and Ca) were selected for incubation with the two biosolids at application rates of 10, 50 and 100 Mg ha(-1) for 48 weeks. This study aims to characterize the influence of the application of biosolids on the soil potential for N mineralization (N0) and also to elucidate the kinetics of N mineralization in tropical soils treated with different biosolids. Experimental results indicate that the amounts of N mineralized accumulated in the biosolids-treated soils during the incubation period tended to match the first-order kinetics calculated by the nonlinear least squares equation. The N0 values of the MS biosolids-treated soils greatly exceeded those of the DS soils. The rates of N mineralization (k) of the DS biosolids-treated soils varied greatly from 0.047 to 0.075 week(-1) and that of the MS soils varied from 0.047 to 0.105 week(-1). Little of the organic N fraction in the biosolids remained available for further mineralization following 48 weeks of incubation. Based on the demand of N uptake by vegetables grown in Taiwanese soils, the rates of biosolids application to the soils are safe, as determined by the amount of N mineralization that does not cause nitrate accumulation.  相似文献   
7.
Huang YT  Hseu ZY  Hsi HC 《Chemosphere》2011,84(9):1244-1249
Thermal treatment is a useful tool to remove Hg from contaminated soils. However, thermal treatment may greatly alter the soil properties and cause the coexisting contaminants, especially trace metals, to transform and repartition. The metal repartitioning may increase the difficulty in the subsequent process of a treatment train approach. In this study, three Hg-contaminated soils were thermally treated to evaluate the effects of treating temperature and duration on Hg removal. Thermogravimetric analysis was performed to project the suitable heating parameters for subsequent bench-scale fixed-bed operation. Results showed that thermal decontamination at temperature >400 °C successfully lowered the Hg content to <20 mg kg−1. The organic carbon content decreased by 0.06-0.11% and the change in soil particle size was less significant, even when the soils were thermally treated to 550 °C. Soil clay minerals such as kaolinite were shown to be decomposed. Aggregates were observed on the surface of soil particles after the treatment. The heavy metals tended to transform into acid-extractable, organic-matter bound, and residual forms from the Fe/Mn oxide bound form. These results suggest that thermal treatment may markedly influence the effectiveness of subsequent decontamination methods, such as acid washing or solvent extraction.  相似文献   
8.
Mahogany, a high biomass fast-growing tropical tree, has recently garnered considerable interest for potential use in heavy metal phytoremediation. This study performed hydroponic experiments with Cd concentration gradients at concentrations of 0, 7.5, 15, and 30 mg L(-1) to identify Cd accumulation and tolerance of mahogany (Swietenia macrophylla) seedlings as well as their potential for phytoextraction. Experimental results indicate that Cd inhibited mahogany seedling growth at the highest Cd exposure concentration (30 mg L(-1)). Nevertheless, this woody species demonstrated great potential for phytoextraction at Cd concentrations of 7.5 and 15 mg L(-1). The roots, twigs, and leaves had extremely large bioaccumulation factors at 10.3-65.1, indicating that the plant extracted large amounts of Cd from hydroponic solutions. Mahogany seedlings accumulated up to 154 mg kg(-1) Cd in twigs at a Cd concentration of 15 mg L(-1). Although Cd concentrations in leaves were <100 mg kg(-1), these concentrations markedly exceed the normal ranges for other plants. Due to the high biomass production and Cd uptake capacity of mahogany shoots, this plant is a potential candidate for remediating Cd-contaminated sites in tropical regions.  相似文献   
9.

The natural abundance of Cr and Ni in serpentine soils is well-known, but the food safety of rice grown in these hazardous paddy soils is poorly understood. The study evaluated the bioaccumulation of chromium (Cr) and nickel (Ni) in rice (Oryza sativa) grown in serpentine-derived paddy soils in the Philippines. Surface soil (0–20 cm) samples were collected and characterized across three (i.e., Masinloc, Candelaria, and Sta. Cruz) paddy areas in Luzon Island, Philippines. At least 3 to 4 whole rice plants at mature stage were uprooted manually in each sampling point where the soil samples were collected. The total Cr and Ni concentrations in rice (i.e., roots, shoots, and grains) and soil, soil physicochemical properties, bioaccumulation factor (BAF), translocation factor (TF), and the hazard quotients (HQ) were determined. Results revealed that Cr and Ni in rice were accumulated mostly in the roots. Although paddy soils had elevated total Cr and Ni concentrations, the BAF and soil-to-root TF values for Cr and Ni were < 1. In terms of human health risks, results further revealed low risk for both male and female Filipino adults as HQ values for Cr and Ni were < 1. While it is safe to consume rice grown in the area in terms of Cr and Ni dietary intake, more studies are necessary to understand the dynamics and bioavailability of these heavy metals in other crops and drinking water from tube wells in these areas in order to provide a more holistic human health-based assessments and to ensure consumer safety in serpentine areas. In addition, a more reliable data on Cr and Ni speciation in serpentine soils and crops is critically important. Further studies are also needed to understand the contribution of bioavailable heavy metals in improving the soil health to achieve food safety.

  相似文献   
10.
We investigated the extractability of nickel (Ni) in serpentine soils collected from rice paddy fields in eastern Taiwan to evaluate the bioavailability of Ni in the soils as well as for demonstrating the health risks of Ni in rice. Total Ni concentrations in the soils ranged were 70.2–2730 mg/kg (mean, 472 mg/kg), greatly exceeding the natural background content and soil control standard in Taiwan. Available Ni concentration only accounts for <10% of total soil Ni content; 0.1 N HCl-extractable Ni was the more suitable index for Ni bioavailability in the soil to rice than was diethylenetriaminepentaacetic acid (DTPA)-extractable Ni. The accumulation ability of rice roots was much higher than that of its shoots; however, compared with those reported previously, our brown and polished rice samples contained much higher Ni concentrations, within the ranges of 1.50–4.53 and 2.45–5.54 mg/kg, respectively. On the basis of the provisional tolerable Ni intake for adults recommended by the World Health Organization (WHO), daily consumption of this rice can result in an excessive Ni intake.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号